Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060502    DOI: 10.1088/1674-1056/27/6/060502
GENERAL Prev   Next  

The heat and work of quantum thermodynamic processes with quantum coherence

Shanhe Su(苏山河)1,2, Jinfu Chen(陈劲夫)1,3, Yuhan Ma(马宇翰)1,3, Jincan Chen(陈金灿)2, Changpu Sun(孙昌璞)1,3
1 Beijing Computational Science Research Center, Beijing 100193, China;
2 Department of Physics, Xiamen University, Xiamen 361005, China;
3 Graduate School of the Chinese Academy of Engineering Physics, Beijing 100193, China
Abstract  

Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenenergies or the probability distributions of a quantum system. The discrepancies of the heat and work for various quantum thermodynamic processes have not been well characterized in literature. Here we show how the work in quantum machines is differentially related to the isochoric, isothermal, and adiabatic processes. We prove that the energy exchanges during the quantum isochoric and isothermal processes are simply depending on the change in the eigenenergies or the probability distributions. However, for a time-dependent system in a non-adiabatic quantum evolution, the transitions between the different quantum states representing the quantum coherence can affect the essential thermodynamic properties, and thus the general definitions of the heat and work should be clarified with respect to the microscopic generic time-dependent system. By integrating the coherence effects in the exactly-solvable dynamics of quantum-spin precession, the internal energy is rigorously transferred as the work in the thermodynamic adiabatic process. The present study demonstrates that the quantum adiabatic process is sufficient but not necessary for the thermodynamic adiabatic process.

Keywords:  heat and work      thermodynamic adiabatic process      quantum coherence  
Received:  22 January 2018      Revised:  27 March 2018      Accepted manuscript online: 
PACS:  05.70.-a (Thermodynamics)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  07.20.Pe (Heat engines; heat pumps; heat pipes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11421063,11534002,and 51776178) and the National Key Basic Research Program of China (Grant Nos.2012CB922104 and 2014CB921403).

Corresponding Authors:  Changpu Sun     E-mail:  cpsun@csrc.ac.cn

Cite this article: 

Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞) The heat and work of quantum thermodynamic processes with quantum coherence 2018 Chin. Phys. B 27 060502

[1] Chen H, Wang X, Fang A and Li H 2016 Chin. Phys. B 25 098201
[2] Qin M, Shen H Z, Zhao X L and Yi X X 2017 Phys. Rev. A 96 012125
[3] Wang X, Li H, Zhang P, Li F 2013 Chin. Phys. B 22 117102
[4] Boyd A B and Crutchfield J P 2016 Phys. Rev. Lett. 116 190601
[5] Anjaria K and Mishra A 2017 Chin. Phys. B 26 100507
[6] Zwick A, Ávarez G A and Kurizki G 2016 Phys. Rev. Appl. 5 014007
[7] Horowitz J M and Esposito M 2014 Phys. Rev. X 4 031015
[8] Wang H and Wu G 2012 Chin. Phys. B 21 010505
[9] He J, Xian H and Zheng J 2012 Chin. Phys. B 21 050303
[10] Xu D, Wang C, Zhao Y and Cao J 2016 New. J. Phys. 18 023003
[11] Svidzinsky A A, Dorfman K E and Scully M O 2011 Phys. Rev. A 84 053818
[12] Su S H, Sun C P, Li S W and Chen J C 2016 Phys. Rev. E 93 052103
[13] Quan H T, Liu Y, Sun C P and Nori F 2007 Phys. Rev. E 76 031105
[14] Lin B and Chen J 2003 Phys. Rev. E 67 046105
[15] Wang J, Ye Z, Lai Y, Li W and He J 2015 Phys. Rev. E 91 062134
[16] Wang H, He J, Wang J and Wu Z 2016 J. Appl. Phys. 120 154303
[17] Alicki R 1979 J. Phys. A:Math. Gen. 12 L103
[18] Alicki R 2016 Entropy 18 210
[19] Kosloff R and Rezek Y 2017 Entropy 19 136
[20] Rezek Y and Kosloff R 2006 New. J. Phys. 8 83
[21] Geva E and Kosloff R 1992 J. Chem. Phys. 97 4398-4412
[22] Boukobza E and Tannor D J 2006 Phys. Rev. A 74 063823
[23] Hossein-Nejad H, O'Reilly E J and Olaya-Castro A 2015 New J. Phys. 17 075014
[24] von Neumann J 1955 Mathematical foundations of quantum mechanics (Princeton:Princeton University Press) pp. 12-15
[25] Kieu T D 2006 Eur. Phys. J. D 39 115
[26] Griffiths D J 2005 Introduction to quantum mechanics, 2nd edn. (New Jersey:Prentice Hall) pp. 373-374
[27] Sun C and Zhang L 1995 Phys. Scr. 51 16
[28] Biedenharn L C and James D L 1984 Angular momentum in quantum physics (Cambridge:Cambridge University Press) p. 53
[29] Varshalovich D A, Moskalev A N and Khersonskii V K M 1988 Quantum theory of angular momentum (Singapore:World Scientific) pp. 12-15
[30] Feng X M, Wang P, Yang W and Jin G R 2015 Phys. Rev. E 92 043307
[31] Berry M V 2009 J. Phys. A:Math. Theor. 42 365303
[32] Sun C P 1988 J. Phys. A:Math. Gen. 21 1595-1599
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[4] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[11] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[14] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[15] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
No Suggested Reading articles found!