Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038702    DOI: 10.1088/1674-1056/aca9c7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit

Ying Wang(王莹)1,2,3,4, Feng Qi(祁峰)2,3,4,5,†, Zi-Xu Zhang(张子旭)6, and Jin-Kuan Wang(汪晋宽)1
1 School of Communication Science and Engineering, Northeastern University, Shenyang 110819, China;
2 Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China;
3 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
4 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China;
5 University of Chinese Academy of Sciences, Beijing 100049, China;
6 University of Technology Sydney, NSW 2007, Australia
Abstract  Terahertz (THz) imaging has drawn significant attention because THz wave has a unique capability to transient, ultra-wide spectrum and low photon energy. However, the low resolution has always been a problem due to its long wavelength, limiting their application of fields practical use. In this paper, we proposed a complex one-shot super-resolution (COSSR) framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF. Compared with real convolution neural network-based approaches and complex zero-shot super-resolution (CZSSR), COSSR delivers at least 6.67, 0.003, and 6.96% superior higher imaging efficacy in terms of peak signal to noise ratio (PSNR), mean square error (MSE), and structural similarity index measure (SSIM), respectively, for the analyzed data. Additionally, the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data. The COSSR provides a new pathway for THz imaging super-resolution (SR) reconstruction below the diffraction limit.
Keywords:  terahertz      image processing      complex convolution neural network  
Received:  13 October 2022      Revised:  25 November 2022      Accepted manuscript online:  08 December 2022
PACS:  87.50.U-  
  87.85.dq (Neural networks)  
  95.75.Mn (Image processing (including source extraction))  
Fund: Project supported by "XingLiaoYingCai" Talents of Liaoning Province, China (Grant No. XLYC2007074), Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program (Grant No. RC200512), and the Central Guidance on Local Science and Technology Development Fund of Liaoning Province, China (Grant No. 2022JH6/100100010).
Corresponding Authors:  Feng Qi     E-mail:  qifeng@sia.cn

Cite this article: 

Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽) Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit 2023 Chin. Phys. B 32 038702

[1] Yan D X, Life J S and Wang Y 2019 Acta Phys. Sin. 68 207801 (in Chinese)
[2] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202
[3] Mittleman D M, Jacobsen R H and Nuss M C 1996 IEEE J. Selec. Top. Quantum Electron. 2 679
[4] Chen H, Ma S H, Yan W X, Wu X M and Wang X Z 2013 Chin. Phys. Lett. 30 030702
[5] Knobloch P, Schildknecht C, Kleine-Ostmann T, et al. 2002 Phys. Med. Biol. 47 3875
[6] Joseph C S, Yaroslavsky A N, Neel V A, Goyette T M and Giles R H 2011 Lasers in Surgery and Medicine 43 457
[7] Fan S, Ung B S, Parrott E P, Wallace V P and Pickwell-MacPherson E 2017 J. Biophoton. 10 1143
[8] Ahi K 2017 IEEE Trans. Terahertz Sci. Technol. 7 747
[9] Ahi K, Shahbazmohamadi S and Asadizanjani N 2018 Opt. Lasers Eng. 104 274
[10] Karpowicz N, Zhong H, Zhang C, Lin K I, Hwang J S, Xu J and Zhang X C 2005 Appl. Phys. Lett. 86 054105
[11] Quast H, Keil A and Löffler T 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE) pp. 1-2
[12] Friederich F, May K H, Baccouche B, Matheis C, Bauer M, Jonuscheit J, Moor M, Denman D, Bramble J and Savage N 2018 Terahertz Radome Inspection Photonics, Vol. 5 (MDPI) p. 1
[13] Zhang Y, Tian Y, Kong Y, Zhong B and Fu Y 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 2472-2481
[14] Johnson J, Alahi A and Fei-Fei L 2016 European Conference on Computer Vision (Springer) pp. 694-711
[15] Dong C, Loy C C, He K and Tang X 2015 IEEE Transactions on Pattern Analysis and Machine Intelligence 38 295
[16] Haris M, Widyanto M R and Nobuhara H 2017 Appl. Opt. 56 6043
[17] Zhang Y, Li K, Li K, Wang L, Zhong B and Fu Y 2018 Proceedings of the European Conference on Computer Vision (ECCV) pp. 286-301
[18] Haris M, Shakhnarovich G and Ukita N 2020 IEEE Transactions on Pattern Analysis and Machine Intelligence 43 4323
[19] Long Z, Wang T, You C, Yang Z, Wang K and Liu J 2019 Appl. Opt. 58 2731
[20] Li Y, Hu W, Zhang X, Xu Z, Ni J and Ligthart L P 2020 Opt. Express 28 22200
[21] Han Z, Hu W, Li Y, Xu Z, Zhao Y, Ni J and Ligthart L 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC) (IEEE) pp. 1-3
[22] Ning W, Qi F, Liu Z, Wang Y, Wu H and Wang J 2019 IEEE Access 7 65116
[23] Wang Y, Qi F and Wang J 2021 Opt. Lett. 46 3123
[24] Wang Y, Qi F and Wang J 2022 Appl. Opt. 61 5831
[1] Integrated system of traditional THz time-domain spectroscopy andasynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波)†, Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!