Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038703    DOI: 10.1088/1674-1056/ac7451
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of autaptic delay signal on spike-timing precision of single neuron

Xuan Ma(马璇)1, Yaya Zhao(赵鸭鸭)1, Yafeng Wang(王亚峰)2, Yueling Chen(陈月玲)3, and Hengtong Wang(王恒通)1,†
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Physics and Information Technology, Baoji University, Baoji 710062, China;
3 College of Information Engineering, Gansu University of Chinese Medicine, Lanzhou 730000, China
Abstract  Experimental and theoretical studies have reported that the precise firing of neurons is crucial for sensory representation. Autapse serves as a special synapse connecting neuron and itself, which has also been found to improve the accuracy of neuronal response. In current work, the effect of autaptic delay signal on the spike-timing precision is investigated on a single autaptic Hodgkin-Huxley neuron in the present of noise. The simulation results show that both excitatory and inhibitory autaptic signals can effectively adjust the precise spike time of neurons with noise by choosing the appropriate coupling strength g and time delay of autaptic signal τ. The g-τ parameter space is divided into two regions: one is the region where the spike-timing precision is effectively regulated; the other is the region where the neuronal firing is almost not regulated. For the excitatory and inhibitory autapse, the range of parameters causing the accuracy of neuronal firing is different. Moreover, it is also found that the mechanisms of the spike-timing precision regulation are different for the two kinds of autaptic signals.
Keywords:  autapse      time delay      spike-timing precision  
Received:  19 March 2022      Revised:  11 May 2022      Accepted manuscript online:  29 May 2022
PACS:  87.19.lg (Synapses: chemical and electrical (gap junctions))  
  87.19.ll (Models of single neurons and networks)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. GK201903020), the National Natural Science Foundation of China (Grant No. 12005006), and Scientific research project of Education Department of Gansu Province, China (Grant No. 2016A-049).
Corresponding Authors:  Hengtong Wang     E-mail:  wanghengtong@snnu.edu.cn

Cite this article: 

Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通) Effect of autaptic delay signal on spike-timing precision of single neuron 2023 Chin. Phys. B 32 038703

[1] Gardner B and Grüning A 2016 PloS One 11 e0161335
[2] Gaudry Q, Hong E J, Kain J, de Bivort B L, Wilson R I, de Bivort B L and Wilson R I 2013 Nature 493 424
[3] Buzsáki G and Wang X J 2012 Annu. Rev. Neurosci. 35 203
[4] James L E, Jean-Christophe L M, Glenn F, Zachary W and Monica Z W 2000 Proc. SPIE 4126 407519
[5] Mainen Z and Sejnowski T 1995 Science 268 1503
[6] Dayan P and Abbott L F 2001 Theoretical Neuroscience (Cambridge: The MIT Press)
[7] Butts D, Weng C, Jin J, Yeh C, Lesica1 N, Alonso J and Stanley G 2007 Nature 449 92
[8] Buracas G T, Zador A M, DeWeese M R and Albright T D 1998 Neuron 20 959
[9] Masuda N and Aihara K 2003 Neural Comput. 15 1341
[10] Tzounopoulos T and Kraus N 2009 Neuron 62 463
[11] VanRullen R, Guyonneau R and Thorpe S J 2005 Trends Neurosci. 28 1
[12] Grothe B and Klump G M 2000 Curr. Opin. Neurobiol. 10 467
[13] Borst A and Theunissen F E 1999 Nat. Neurosci. 2 14731
[14] Fricker D and Miles R 2001 Neuron 32 771
[15] Kilinc D and Demir A 2018 J. Comput. Neurosci. 44 341
[16] Srivastava K H, Holmes C M, Vellema M, Pack A R, Elemans C P, Nemenman I and Sober S J 2017 Proc. Natl. Acad. Sci. USA 114 1171
[17] Hasse J M and Briggs F 2017 Proc. Natl. Acad. Sci. USA 114 E6222
[18] Yao Y, Su C and Xiong J 2019 Physica A 531 121734
[19] Verschueren E, Vanthornhout J and Francart T 2020 Hear. Res. 403 108175
[20] Vogels T P, Froemke R C, Doyon N, Gilson M, Haas J S, Liu R, Maffei A, Miller P, Wierenga C J and Woodin M A 2013 Front. Neural Circuits 7 119
[21] Garrido J A, Eduardo R and Egidio D 2013 Front. Comput. Neurosc. 7 159
[22] Maisel B and Lindenberg K 2017 Phys. Rev. E 95 022414
[23] Park S and Kwag J 2012 Neurosci. Lett. 523 9
[24] Zhao Z, Li L and Gu H 2018 Front. Cell. Neurosci. 12 00062
[25] Bacci A, Huguenard J R and Prince D A 2003 J. Neurosci. 23 859
[26] Klausberger T, Magill P J, Marton L F, Roberts J D, Cobden P M, Buzsaki G and Somogyi P 2003 Nature 421 844
[27] Hájos N, Pacutealhalmi J, Mann E O, Nacuteemeth B, Paulsen O and Freund T F 2004 J. Neurosci. 24 9127
[28] Somogyi P and Klausberger T 2005 J. Physiol. 562 9
[29] Bacci A and Huguenard J R 2006 Neuron 119 2006
[30] Wang H and Chen Y 2015 Chin. Phys. B 24 128709
[31] He Z, Yao C, Shuai J and Nakano T 2020 Chin. Phys. B 29 128702
[32] Yue Y, Liu L, Liu Y, Chen Y, Chen Y and Yu L 2017 Nonlinear Dyn. 90 2893
[33] Zhang N, Li D and Xing Y 2021 Eur. Phys. J. B 94 1
[34] He Z, Yao C, Shuai J and Nakano T 2020 Chin. Phys. B 29 128702
[35] Chagnaud B P, Perelmuter J T, Forlano P M and Bass A H 2021 Elife 10 e59390
[36] Xu Y and Ma J 2021 Chin. Phys. B 30 100501
[37] Dhamala M, Jirsa V K and Ding M 2004 Phys. Rev. Lett. 92 074104
[38] Wang Z, Parastesh F, Rajagopal K, Hamarash I I and Hussain I 2020 Chaos Solitons Fractals 134 109702
[39] Khan M A, Maity D and Jabeen S D 2019 Int. J. Mod. Phys. B 33 1950213
[40] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[41] Chen Y, Zhang H, Wang H T, Yu L and Chen Y 2013 PLoS One 8 e56822
[42] Ding X, Jia B, Li Y and Gu H 2021 Int. J. Mod. Phys. B 35 2150110
[43] Beiderbeck B, Myoga M H, Müller N I C, Callan A R, Friauf E, Grothe B and Pecka M 2018 Nat. Commun. 9 1771
[44] Kilinc D and Demir A 2018 J Comput Neurosci 44 341
[45] Gregory L P, Richard B L, Amanda M F and Ralph F F 2015 J. Neurophysiol. 113 1862
[46] Sejnowski T J and Paulsen D 2006 J. Neurosci. 26 1673
[47] Moldakarimov S, Bazhenov M and Sejnowski T J 2015 Proc. Natl. Acad. Sci. USA 112 2545
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability
Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光). Chin. Phys. B, 2022, 31(7): 070506.
[3] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
[11] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[12] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[13] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[14] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[15] Effect of stochastic electromagnetic disturbances on autapse neuronal systems
Liang-Hui Qu(曲良辉), Lin Du(都琳), Zi-Chen Deng(邓子辰), Zi-Lu Cao(曹子露), Hai-Wei Hu(胡海威). Chin. Phys. B, 2018, 27(11): 118707.
No Suggested Reading articles found!