Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 035201    DOI: 10.1088/1674-1056/ac872c
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma

Shijie Zhang(张世杰)1,2, Weimin Zhou(周维民)2,†, Yan Yin(银燕)1, Debin Zou(邹德滨)1, Na Zhao(赵娜)4, Duan Xie(谢端)5, and Hongbin Zhuo(卓红斌)3,‡
1 Department of Physics, National University of Defense Technology, Changsha 410073, China;
2 Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics(CAEP), Mianyang 621900, China;
3 Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, China;
4 School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha 410205, China;
5 School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410003, China
Abstract  Low-noise terahertz (THz) radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density (NCD) plasma slab is studied by theory and particle-in-cell (PIC) simulations. A theoretical model is established to examine the dipole-like radiation emission. The THz radiation is attributed to the single-cycle low-frequency surface current, which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force. Through theoretical analysis, the spatiotemporal characteristics, polarization property of the THz radiation, and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained, which are in good consistence with the PIC simulation results. Furthermore, it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime, resulting in a clear THz radiation waveform. The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm, which could find potential applications in nonlinear THz physics.
Keywords:  intense terahertz radiation      relativistic laser-plasma interactions      particle-in-cell simulation  
Received:  13 May 2022      Revised:  07 July 2022      Accepted manuscript online:  05 August 2022
PACS:  52.65.Rr (Particle-in-cell method)  
  52.59.-f (Intense particle beams and radiation sources)  
  52.38.-r (Laser-plasma interactions)  
  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774430, 12075157, 11775202, and 12175310), and the Scientific Research Foundation of Hunan Provincial Education Department (Grant No. 20A042).
Corresponding Authors:  Weimin Zhou, Hongbin Zhuo     E-mail:  hongbin.zhuo@gmail.com;zhouwm@caep.cn

Cite this article: 

Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌) Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma 2023 Chin. Phys. B 32 035201

[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Dhillon S, Vitiello M, Linfield E, Davies A, Hoffmann M C, Booske J, Paoloni C, Gensch M, Weightman P and Williams G 2017 J. Phys. D: Appl. Phys. 50 043001
[3] Mankowsky R, Först M and Cavalleri A 2016 Rep. Prog. Phys. 79 064503
[4] Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S and Lu J 2012 Nature 487 345
[5] Cavalleri A 2018 Contemp. Phys. 59 31
[6] Qi T T, Shin Y H, Yeh K L, Nelson K A and Rappe A M 2009 Phys. Rev. Lett. 102 247603
[7] Hafez H, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 J. Opt. 18 093004
[8] Zhang Y, Li K and Zhao H 2020 Front. Optoelectron. 14 4
[9] Wang D, Wang X, Liao G, Zhang Z and Li Y 2022 Chin. Phys. B 31 056103
[10] Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Miller R D and Kärtner F X 2015 Nat. Commun. 6 8486
[11] Walsh D, Lake D, Snedden E, Cliffe M, Graham D and Jamison S 2017 Nat. Commun. 8 421
[12] Curry E, Fabbri S, Maxson J, Musumeci P and Gover A 2018 Phys. Rev. Lett. 120 094801
[13] Hibberd M T, Healy A L, Lake D S, Georgiadis V, Smith E J H, Finlay O J, Pacey T H, Jones J K, Saveliev Y, Walsh D A, Snedden E W, Appleby R B, Burt G, Graham D M and Jamison S P 2020 Nat. Photon. 14 755
[14] Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q and Sheng Z M 2016 Chin. Phys. Lett. 33 095202
[15] Hoffmann M C, Schulz S, Wesch S, Wunderlich S, Cavalleri A and Schmidt B 2011 Opt. Lett. 36 4473
[16] Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H and Lindenberg A 2013 Rev. Sci. Instrum. 84 022701
[17] Vicario C, Jazbinsek M, Ovchinnikov A, Chefonov O, Ashitkov S, Agranat M and Hauri C 2015 Opt. Express 23 4573
[18] Shalaby M and Hauri C P 2015 Nat. Commun. 6 5976
[19] Fülöp J A, Tzortzakis S and Kampfrath T 2020 Adv. Opt. Mater. 8 1900681
[20] Liao G and Li Y 2019 IEEE Trans. Plasma Sci. 47 3002
[21] Ding W J, Sheng Z M and Koh W S 2013 Appl. Phys. Lett. 103 204107
[22] Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X and Zhang J 2016 Phys. Rev. Lett. 116 205003
[23] Liao G, Li Y, Liu H, Scott Graeme G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard Peter G, Rusby Dean R, McKenna P, Brenner Ceri M, Woolsey Nigel C, Wang W, Sheng Z and Zhang J 2019 Proc. Natl. Acad. Sci. USA 116 3994
[24] Zhang S, Yu J, Shou Y, Gong Z, Li D, Geng Y, Wang W, Yan X and Lin C 2020 Phys. Plasma 27 023101
[25] Jin Z, Zhuo H B, Nakazawa T, Shin J H, Wakamatsu S, Yugami N, Hosokai T, Zou D B, Yu M Y, Sheng Z M and Kodama R 2016 Phys. Rev. E 94 033206
[26] Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, BrÖmmel D, Karmakar A, Gibbon P and Dillner U 2013 Phys. Rev. Lett. 111 074802
[27] Gopal A, May T, Herzer S, Reinhard A, Minardi S, Schubert M, Dillner U, Pradarutti B, Polz J and Gaumnitz T 2012 New J. Phys. 14 083012
[28] Herzer S, Woldegeorgis A, Polz J, Reinhard A, Almassarani M, Beleites B, Ronneberger F, Grosse R, Paulus G and Hübner U 2018 New J. Phys. 20 063019
[29] Gopal A, Woldegeorgis A, Herzer S and Almassarani M 2019 Phys. Rev. E 100 053203
[30] Woldegeorgis A, Herzer S, Almassarani M, Marathapalli S and Gopal A 2019 Phys. Rev. E 100 053204
[31] Liao G Q, Liu H, Scott G G, Zhang Y H, Zhu B J, Zhang Z, Li Y T, Armstrong C, Zemaityte E, Bradford P, Rusby D R, Neely D, Huggard P G, McKenna P, Brenner C M, Woolsey N C, Wang W M, Sheng Z M and Zhang J 2020 Phys. Rev. X 10 031062
[32] Henares J, Puyuelo Valdes P, Hannachi F, Ceccotti T, Ehret M, Gobet F, Lancia L, Marqués J R, Santos J and Versteegen M 2019 Rev. Sci. Instrum. 90 063302
[33] Jun L Y, Ning Y D, Qing D Y, Xu Z, Qing W W, Lei G X, Hui Y X, Feng L and Ming C L 2019 Acta Phys. Sin. 68 155201 (in Chinese)
[34] Yu W, Yu M Y, Sheng Z M and Zhang J 1998 Phys. Rev. E 58 2456
[35] Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Phys. Rev. Lett. 94 165003
[36] Ji L, Shen B, Zhang X, Wen M, Xia C, Wang W, Xu J, Yu Y, Yu M and Xu Z 2011 Phys. Plasma 18 083104
[37] Jackson J D 1998 Classical Electrodynamics 3rd edn. (New York: John Wiley & Sons) p. 663
[38] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001
[39] Chen Z Y, Li X Y and Yu W 2013 Phys. Plasma 20 103115
[40] Jiang B, He C, Zhao N, Nash P, Shi C and Wang Z 2015 Sci. Rep. 5 13825
[41] Maffini A, Pazzaglia A, Dellasega D, Russo V and Passoni M 2019 Phys. Rev. Mater. 3 083404
[42] Marqués J R, Loiseau P, Bonvalet J, Tarisien M, d'Humiéres E, Domange J, Hannachi F, Lancia L, Larroche O and Nicola P 2021 Phys. Plasma 28 023103
[1] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[4] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[5] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[6] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[7] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[8] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[9] Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge
Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) . Chin. Phys. B, 2012, 21(5): 055205.
[10] Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization
Luo Mu-Hua(罗牧华) and Zhang Qiu-Ju(张秋菊). Chin. Phys. B, 2011, 20(8): 085201.
[11] Particle-in-cell investigation on the resonant absorption of a plasma surface wave
Lan Chao-Hui(蓝朝晖) and Hu Xi-Wei(胡希伟) . Chin. Phys. B, 2011, 20(10): 105202.
[12] Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal
Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治). Chin. Phys. B, 2010, 19(3): 034210.
[13] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
No Suggested Reading articles found!