Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 036101    DOI: 10.1088/1674-1056/ac9366

Atomic simulations of primary irradiation damage in U-Mo-Xe system

Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新)
The Key Laboratory of Advanced Materials(MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  To shed a light on Xe bubble nucleation in U-Mo fuel from the view of primary irradiation damage, a reported U-Mo-Xe potential under the framework of embedded atom method has been modified within the range of short and intermediate atomic distance. The modified potential can better describe the interactions between energetic particles, and can accurately reproduce the threshold displacement energy surface calculated by the first-principles method. Then, molecular dynamics simulations of primary irradiation damage in U-Mo-Xe system have been conducted under different contents. The raise of Xe concentration brings about a remarkable promotion in residual defect quantity and generates bubbles in more over-pressured state, which suggests an acceleration of irradiation damage under the accumulation of the fission gas. Meanwhile, the addition of Mo considerably reduces the residual defect count and hinders irradiation-induced Xe diffusion especially at high contents of Xe, corroborating the importance of high Mo content in mitigation of irradiation damage and swelling behavior in U-Mo fuel. In particular, the variation of irradiation damage with respect to contents suggests a necessity of taking into account the influence of local components on defect evolution in mesoscale simulations.
Keywords:  irradiation damage      metallic fuel      uranium alloy      interatomic potential  
Received:  24 June 2022      Revised:  10 September 2022      Accepted manuscript online:  21 September 2022
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.82.Bg (Metals and alloys)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
Fund: The authors acknowledge Yi Wang for providing inspiration for dealing with technical problems. Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702401) and the National Natural Science Foundation of China (Grant No. 51631005).
Corresponding Authors:  Jian-Bo Liu     E-mail:

Cite this article: 

Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新) Atomic simulations of primary irradiation damage in U-Mo-Xe system 2023 Chin. Phys. B 32 036101

[1] Snelgrove J L, Hofman G L, Meyer M K, Trybus C L and Wiencek T C 1997 Nucl. Eng. Des. 178 119
[2] Landa A, Söderlind P and Turchi P 2011 J. Nucl. Mater. 414 132
[3] Kim Y S and Hofman G L 2011 J. Nucl. Mater. 419 291
[4] Kalashnikov V V, Titova V V, Sergeev G I and Samoilov A G 1959 Sov. At. Energy 5 1315
[5] Rest J, Hofman G L and Kim Y S 2009 J. Nucl. Mater. 385 563
[6] Kim Y, Hofman G, Rest J, Shevlyakov G and Riar S 2008 Technical Report No. ANL-08/11
[7] Meyer M K, Hofman G L, Hayes S L, Clark C R, Wiencek T C, Snelgrove J L, Strain R V and Kim K H 2002 J. Nucl. Mater. 304 221
[8] Williams W, Rice F, Robinson A, Meyer M and Rabin B 2015 Technical Report INL/LTD-15-34142
[9] Gan J, Keiser D D, Wachs D M, Robinson A B, Miller B D and Allen T R 2010 J. Nucl. Mater. 396 234
[10] Van Den Berghe S, Van Renterghem W and Leenaers A 2008 J. Nucl. Mater. 375 340
[11] Hofman G L, Copeland G L and Sanecki J E 1986 Nucl. Technol. 72 338
[12] Berman R M 1963 Nucl. Sci. Eng. 16 315
[13] Liang L, Mei Z G, Kim Y S, Ye B, Hofman G, Anitescu M and Yacout A M 2016 Comput. Mater. Sci. 124 228
[14] Rest J 2004 J. Nucl. Mater. 326 175
[15] Frazier W E, Hu S, Burkes D E and Beeler B W 2019 J. Nucl. Mater. 524 164
[16] Hu S, Joshi V and Lavender C A 2017 Jom 69 2554
[17] Hu S, Setyawan W, Joshi V V and Lavender C A 2017 J. Nucl. Mater. 490 49
[18] Beeler B, Hu S, Zhang Y and Gao Y 2020 J. Nucl. Mater. 530 151961
[19] Plimpton S 1995 J. Comput. Phys. 117 1
[20] Smirnova D E, Kuksin A Y, Starikov S V, Stegailov V V, Insepov Z, Rest J and Yacout A M 2013 Modell. Simul. Mater. Sci. Eng. 21 035011
[21] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[22] Beeler B, Cooper M W D, Mei Z G, Schwen D and Zhang Y 2021 J. Nucl. Mater. 543 152568
[23] Tian X, Xiao H, Tang R and Lu C 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 321 24
[24] Stoller R E, Tamm A, Beland L K, Samolyuk G D, Stocks G M, Caro A, Slipchenko L V, Osetsky Y N, Aabloo A, Klintenberg M and Wang Y 2016 J. Chem. Theory Comput. 12 2871
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Shinoda W, Shiga M and Mikami M 2004 Phys. Rev. B 69 134103
[30] Schneider T and Stoll E 1978 Phys. Rev. B 17 1302
[31] Rest J, Kim Y S, Hofman G L, Meyer M K and Hayes S L 2006 Technical Report No. ANL-09/31
[32] Van Den Berghe S and Lemoine P 2014 Nucl. Eng. Technol. 46 125
[1] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[2] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[3] Effect of helium implantation on SiC and graphite
Guo Hong-Yan (郭洪燕), Ge Chang-Chun (葛昌纯), Xia Min (夏敏), Guo Li-Ping (郭立平), Chen Ji-Hong (陈济鸿), Yan Qing-Zhi (燕青芝). Chin. Phys. B, 2015, 24(3): 037803.
[4] Site preferences and lattice vibrations of Nd6Fe13-xTxSi(T = Co, Ni)
Huang Tian-Shun (黄天顺), Cheng Hai-Xia (成海霞), Wang Xiao-Xu (王晓旭), Zhang Zhen-Feng (张振峰), An Zhi-Wei (安志伟), Zhang Guo-Hua (张国华). Chin. Phys. B, 2015, 24(10): 103402.
[5] Irradiation effect of yttria-stabilized zirconia by high dose dual ion beam irradiation
Zhang Yan-Wen (张艳文), Wang Xu (王绪), Liu Shi-Yi (刘士毅), Tang Mei-Xiong (唐美雄), Zhao Zi-Qiang (赵子强), Zhang Peng (张鹏), Wang Bao-Yi (王宝义), Cao Xing-Zhong (曹兴忠). Chin. Phys. B, 2014, 23(6): 066105.
[6] Mechanical properties of self-irradiated single-crystal copper
Li Wei-Na (李维娜), Xue Jian-Ming (薛建明), Wang Jian-Xiang (王建祥), Duan Hui-Ling (段慧玲). Chin. Phys. B, 2014, 23(3): 036101.
[7] Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion
Yuan Xiao-Jian(袁晓俭), Chen Nan-Xian(陈难先), and Shen Jiang(申江) . Chin. Phys. B, 2012, 21(5): 053401.
[8] Molecular dynamics simulations of displacement cascades in Fe–10%Cr systems
Yu Gang(郁刚), Ma Yan(马雁), Cai Jun(蔡军), and Lu Dao-Gang(陆道纲) . Chin. Phys. B, 2012, 21(3): 036101.
[9] Atomistic simulation of site preference, Curie temperature, and lattice vibration of Nd2Co7 - xFex
Qian Ping(钱萍), Liu Jiu-Li (刘九丽), Hu Yao-Wen(胡耀文), Bai Li-Jun(白丽君), and Shen Jiang(申江). Chin. Phys. B, 2011, 20(7): 076104.
[10] Site preference and thermodynamic properties of R3Ni13-xCoxB2 (R=Y, Nd and Sm)
Qian Ping (钱萍), Liu Jiu-Li (刘九丽), Shen Jiang (申江), Bai Li-Jun (白丽君), Ran Qiong (冉琼), Wang Yun-Liang (王云良). Chin. Phys. B, 2010, 19(12): 126001.
[11] Inverse Monte Carlo study on effective interaction potential of Ag--Rh alloy from pair correlation functions
Zhang Jing-Xiang(张景祥), Li Hui(李辉), Song Xi-Gui(宋西贵), and Zhang Jie(张洁) . Chin. Phys. B, 2009, 18(12): 5259-5266.
[12] A general Möbius inversion transform formula for hcp lattices and its application
Li Mi (李泌), Li Yi-Shan (李一山). Chin. Phys. B, 2002, 11(4): 332-338.
No Suggested Reading articles found!