Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 025203    DOI: 10.1088/1674-1056/ac7f89

Effect of kinetic ions on the toroidal double-tearing modes

Ruibo Zhang(张睿博)1,2, Lei Ye(叶磊)1,†, Yang Chen3, Nong Xiang(项农)1, and Xiaoqing Yang(杨小庆)1
1 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309, USA
Abstract  We investigate the effects of kinetic ions on double-tearing modes (DTMs) using the gyrokinetic particle-in-cell simulation code GEM with a gyrokinetic ion/fluid electron hybrid model. It is found that the ion kinetic effects can decrease the growth rate of the DTMs. This effect is more significant for stronger coupling of DTMs with smaller distance between the rational surfaces. Kinetic ions can also enhance the coupling effect between the two rational surfaces. Energy transfer analyses between particles and wave fields show that the stabilizing effect of kinetic ions comes mainly from the perpendicular magnetic drift of ions in the coupling region and around the outer rational surface.
Keywords:  double-tearing modes      kinetic ions      coupling effect  
Received:  07 April 2022      Revised:  27 June 2022      Accepted manuscript online:  08 July 2022
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.65.Tt (Gyrofluid and gyrokinetic simulations)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: This work was supported by the National MCF Energy R&D Program of China (Grant No. 2019YFE03060001), the National Key R&D Program of China (Grant No. 2017YFE0300406), and the National Natural Science Foundation of China (Grant Nos. 11975272 and 11905257). Y. Chen is supported by the SciDAC Center Advanced Tokamak Modeling Environment (AToM) (Grant No. DE-SC0017992). The numerical calculations in this work were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics, Chinese Academy of Sciences, and resources of the National Energy Research Scientific Computing Center (NERSC), which are supported by the Office of Science of the U.S. Department of Energy (Grant No. DEAC02-05CH11231).
Corresponding Authors:  Lei Ye     E-mail:

Cite this article: 

Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆) Effect of kinetic ions on the toroidal double-tearing modes 2023 Chin. Phys. B 32 025203

[1] Pritchett P, Lee Y and Drake J 1980 Phys. Fluids 23 1368
[2] Furth H, Rutherford P and Selberg H 1973 Phys. Fluids 16 1054
[3] Chang Z, Park W, Fredrickson E, Batha S, Bell M, Bell R, Budny R, Bush C, Janos A, Levinton F, et al. 1996 Phys. Rev. Lett. 77 3553
[4] Liu D, Zhang W, McClenaghan J, Wang J and Lin Z 2014 Phys. Plasmas 21 122520
[5] Zhang R, Chen Y, Ye L and Xiang N 2022 Phys. Plasmas 29 012108
[6] Wang J, Zheng-Xiong W, Lai W and Yue L 2017 Nucl. Fusion 57 046007
[7] Ishii Y, Smolyakov A and Takechi M 2009 Nucl. Fusion 49 085006
[8] Zhang R, Lu X, Huang Q, Dong J and Gong X 2016 Phys. Plasmas 23 122509
[9] Wang Z X, Wei L, Wang X and Liu Y 2011 Phys. Plasmas 18 050701
[10] Wang X Q, Wang X, Xu W B and Wang Z X 2011 Phys. Plasmas 18 012102
[11] Zhang W, Ma Z and Wang S 2017 Phys. Plasmas 24 102510
[12] Ye C, Wang Z X, Wei L and Hu Z Q 2019 Nucl. Fusion 59 096044
[13] Sun G, Dong C and Duan L 2015 Phys. Plasmas 22 092509
[14] Liu T, Wang Z X, Wang J and Wei L 2018 Nucl. Fusion 58 076026
[15] Hazeltine R, Dobrott D and Wang T 1975 Phys. Fluids 18 1778
[16] Drake J and Lee Y 1977 Phys. Fluids 20 1341
[17] Cai H and Fu G 2012 Phys. Plasmas 19 072506
[18] Rogers B, Kobayashi S, Ricci P, Dorland W, Drake J and Tatsuno T 2007 Phys. Plasmas 14 092110
[19] Liu Y, Hastie R and Hender T 2012 Phys. Plasmas 19 092510
[20] Hornsby W, Migliano P, Buchholz R, Kroenert L, Weikl A, Peeters A, Zarzoso D, Poli E and Casson F 2015 Phys. Plasmas 22 022118
[21] Wang X Q and Wang X G 2016 Nucl. Fusion 57 016039
[22] Gao B, Cai H, Wang F, Gao X and Wan Y 2021 Phys. Plasmas 28 012104
[23] Yao Y, Lin Z, Dong J, Shi P, Liu S and Li J 2021 Phys. Lett. A 417 127681
[24] Toi K, Takechi M, Takagi S, et al. 1999 Nucl. Fusion 39 1929
[25] Shi P, Chen W, Wang Z, et al. 2021 Nucl. Fusion 61 096025
[26] Chen Y and Parker S E 2007 J. Comput. Phys. 220 839
[27] Chen Y and Parker S 2001 Phys. Plasmas 8 441
[28] Chen Y and Parker S 2003 J. Comput. Phys. 189 463
[29] Snyder P and Hammett G 2001 Phys. Plasmas 8 3199
[30] Günter S, Schade S, Maraschek M, Pinches S, Strumberger E, Wolf R, Yu Q and Team A U 2000 Nucl. Fusion 40 1541
[31] Chen Y, Chowdhury J, Parker S and Wan W 2015 Phys. Plasmas 22 042111
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[3] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[4] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[5] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[6] The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology
Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(8): 088401.
[7] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[8] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[9] Equivalent circuit model including magnetic and thermo sources for the thermo–magneto–electric coupling effect in magnetoelectric laminates
Cui Xiao-Le (崔晓乐), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(7): 077506.
[10] Dynamic thermo-mechanical coupled response of random particulate composites:A statistical two-scale method
Yang Zi-Hao (杨自豪), Chen Yun (陈云), Yang Zhi-Qiang (杨志强), Ma Qiang (马强). Chin. Phys. B, 2014, 23(7): 076501.
[11] Enhanced ferroelectricity and ferromagnetism in Bi0.9Ba0.1FeO3/La2/3Sr1/3MnO3 heterostructure grown by pulsed laser deposition
Wen Xiao-Li (温晓莉), Chen Zhao (陈钊), Lin Xin (林鑫), Niu Li-Wei (牛利伟), Duan Meng-Meng (段萌萌), Zhang Yun-Jie (张云婕), Dong Xiang-Lei (董祥雷), Chen Chang-Le (陈长乐). Chin. Phys. B, 2014, 23(11): 117703.
[12] Coupling effects of depletion interactions in three-sphere colloidal system
Chen Ze-Shun (陈泽顺), Dai Gang (戴刚), Gao Hai-Xia (高海峡), Xiao Chang-Ming (肖长明). Chin. Phys. B, 2013, 22(5): 058202.
[13] Further investigations of the low-lying electronic states of AsO+ radical
Zhu Zun-Lue (朱遵略), Qiao Hao (乔浩), Lang Jian-Hua (郎建华), Sun Jin-Feng (孙金锋). Chin. Phys. B, 2013, 22(10): 103102.
[14] The effect of moving bottlenecks on a two-lane traffic flow
Fang Yuan (方远), Chen Jian-Zhong (陈建忠), Peng Zhi-Yuan (彭志远). Chin. Phys. B, 2013, 22(10): 108902.
[15] Coupling and stability of bright holographic soliton pairs
Liu Jin-Song (刘劲松), Hao Zhong-Hua (郝中华). Chin. Phys. B, 2004, 13(5): 704-711.
No Suggested Reading articles found!