Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 076501    DOI: 10.1088/1674-1056/23/7/076501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dynamic thermo-mechanical coupled response of random particulate composites:A statistical two-scale method

Yang Zi-Hao (杨自豪)a, Chen Yun (陈云)b, Yang Zhi-Qiang (杨志强)a, Ma Qiang (马强)c
a Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China;
b College of Computer Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
c LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
Abstract  This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro-characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.
Keywords:  random particulate composites      statistical second-order two-scale (SSOTS) analysis method      thermo-mechanical coupling effect      numerical algorithm  
Received:  05 November 2013      Revised:  19 February 2014      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
Fund: Project supported by the Special Funds for the National Basic Research Program of China (Grant No. 2012CB025904) and the National Natural Science Foundation of China (Grant Nos. 90916027 and 11302052).
Corresponding Authors:  Yang Zi-Hao     E-mail:  yzh@mail.nwpu.edu.cn
About author:  65.40.-b; 68.35.-p

Cite this article: 

Yang Zi-Hao (杨自豪), Chen Yun (陈云), Yang Zhi-Qiang (杨志强), Ma Qiang (马强) Dynamic thermo-mechanical coupled response of random particulate composites:A statistical two-scale method 2014 Chin. Phys. B 23 076501

[1] Biot M A 1956 J. Appl. Phys. 27 240
[2] Boley B and Weiner J 1960 Theory of Thermal Stress (New York: John Wiley)
[3] Takeuti Y and Furukawa T 1981 J. Appl. Mech. 48 113
[4] Abd-Alla A, Mahmoud S and Abo-Dahab S 2012 Meccanica 47 1295
[5] Danilovskaya V 1950 Prikl. Mat. Mekh. 14 316
[6] Yang Y C and Chu S S 2001 Int. Commun. Heat. Mass. 28 1103
[7] Manoach E and Ribeiro P 2004 Int. J. Mech. Sci. 46 1589
[8] Hetnarski R B and Eslami M R 2008 Thermal Stresses: Advanced Theory and Applications (Berlin: Springer Verlag)
[9] Kögl M and Gaul L 2003 Arch. Appl. Mech. 73 377
[10] Ma Y E and Sun Q 2007 J. Mech. Strength. 29 483
[11] Lee H L, Yang Y C and Chu S S 2002 J. Therm. Stresses 25 1105
[12] Farhat C, Park K and Dubois-Pelerin Y 1991 Comput. Meth. Appl. M. 85 349
[13] Feng Y P and Cui J Z 2003 Acta Mech. Sin. 19 585
[14] Zhang H, Zhang S, Bi J and Schrefler B 2007 Int. J. Numer. Meth. Eng. 69 87
[15] Yu W and Tang T 2007 Int. J. Solids Struct. 44 3738
[16] Aboudi J, Pindera M and Arnold S 2001 J. Appl. Mech. 68 697
[17] Terada K, Kurumatani M, Ushida T and Kikuchi N 2010 Comput. Mech. 46 269
[18] Abbas I A, Kumar R and Chawla V 2012 Chin. Phys. B 21 084601
[19] Francfort G A 1983 SIAM J. Math. Anal. 14 696
[20] Parnell W J 2006 J. Eng. Math. 56 1
[21] Aboudi J 2008 J. Eng. Math. 61 111
[22] Khan K A, Barello R, Muliana A H and Lévesque M 2011 Mech. Mater. 43 608
[23] Vel S S and Goupee A J 2010 Comput. Mater. Sci. 48 22
[24] Cioranescu D and Donato P 2000 An Introduction to Homogenization (New York: Oxford University Press)
[25] Cui J Z, Shin T M and Wang Y L 1999 Strcut. Eng. Mech. 7 601
[26] Yang Z Q, Cui J Z and Li B W 2014 Chin. Phys. B 23 030203
[27] Feng Y P, Cui J Z and Deng M X 2009 Acta Phys. Sin. 58 327 (in Chinese)
[28] Wan J J 2007 Multi-Scale Analysis Method for Dynamic Coupled Thermoelasticity of Composite Structures (Ph.D. Dissertation) (Beijing: Academy of Mathematics and System Sciences) (in Chinese)
[29] Li Y Y and Cui J Z 2004 Sci. China Ser. A: Math. 47 101
[30] Li Y Y and Cui J Z 2005 Compos. Sci. Technol. 65 1447
[31] Han F, Cui J Z and Yu Y 2009 Acta Phys. Sin. 58 S1 (in Chinese)
[32] Yang Z H and Cui J Z 2013 Comput. Mater. Sci. 69 359
[33] Yu Y, Cui J Z and Han F 2008 Compos. Sci. Technol. 68 2543
[34] Han F 2010 The Second-Order Two-Scale Method for Predicting Mechanical Performance of Random Composite Materials (Ph.D. Dissertation) (Xi'an: Northwestern Polytechnical University) (in Chinese)
[35] Reddy J N 1993 An Introduction to the Finite Element Method (New York: McGraw-Hill)
[36] Cui J Z 2001 Invited Presentation on‘Chinese Conference of Computational Mechanics, CCCM-2001’ in Proceedings on‘Computational Mechanics in Science and Engineering’, December 5-8, 2001 Peking, China, p. 33
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[3] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[4] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[5] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[6] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[7] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[8] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[9] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[10] Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦). Chin. Phys. B, 2019, 28(6): 060701.
[11] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[12] Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies
Yang Hong(洪扬), Jingchao Zhang(张景超), Xiao Cheng Zeng(曾晓成). Chin. Phys. B, 2018, 27(3): 036501.
[13] First-principles calculations of structural and thermodynamic properties of β-PbO
Vahedeh Razzazi, Sholeh Alaei. Chin. Phys. B, 2017, 26(11): 116501.
[14] High-temperature thermodynamics of silver:Semi-empirical approach
R H Joshi, B Y Thakore, P R Vyas, A R Jani, N K Bhatt. Chin. Phys. B, 2017, 26(11): 116502.
[15] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
No Suggested Reading articles found!