Please wait a minute...
Chinese Physics, 2007, Vol. 16(9): 2773-2778    DOI: 10.1088/1009-1963/16/9/046

Experimental study on radiation effects in floating gate read-only-memories and static random access memories

He Chao-Hui(贺朝会) and Li Yong-Hong(李永宏)
School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Radiation effects of the floating gate read-only-memory (FG ROM) and the static random access memory (SRAM) have been evaluated using the 14 MeV neutron and 31.9MeV proton beams and Co-60 $\gamma $-rays. The neutron fluence, when the first error occurs in the FG ROMs, is at least 5 orders of magnitude higher than that in the SRAMs, and the proton fluence, 4 orders of magnitude higher. The total dose threshold for Co-60 $\gamma $-ray irradiation is about 10$^{4}$ rad (Si) for both memories. The difference and similarity are attributed to the structure of the memory cells and the mechanism of radiation effects. It is concluded that the FG ROMs are more reliable as semiconductor memories for storing data than the SRAMs, when they are used in the satellites or space crafts exposed to high energy particle radiation.
Keywords:  single event effect      total ionizing dose effect      FG ROM      SRAM  
Received:  23 November 2006      Revised:  09 February 2007      Accepted manuscript online: 
PACS:  84.30.Sk (Pulse and digital circuits)  
  61.80.Hg (Neutron radiation effects)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the Program for New Century Excellent Talents in University, China (Grant No~NCET-04-0926).

Cite this article: 

He Chao-Hui(贺朝会) and Li Yong-Hong(李永宏) Experimental study on radiation effects in floating gate read-only-memories and static random access memories 2007 Chinese Physics 16 2773

[1] Influences of supply voltage on single event upsets and multiple-cell upsets in nanometer SRAM across a wide linear energy transfer range
Yin-Yong Luo(罗尹虹), Wei Chen(陈伟), Feng-Qi Zhang(张凤祁), and Tan Wang(王坦). Chin. Phys. B, 2021, 30(4): 048502.
[2] Investigation of single event effect in 28-nm system-on-chip with multi patterns
Wei-Tao Yang(杨卫涛), Yong-Hong Li(李永宏)†, Ya-Xin Guo(郭亚鑫), Hao-Yu Zhao(赵浩昱), Yang Li(李洋), Pei Li(李培), Chao-Hui He(贺朝会), Gang Guo(郭刚), Jie Liu(刘杰), Sheng-Sheng Yang(杨生胜), and Heng An(安恒). Chin. Phys. B, 2020, 29(10): 108504.
[3] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[4] Single event upset on static random access memory devices due to spallation, reactor, and monoenergetic neutrons
Xiao-Ming Jin(金晓明), Wei Chen(陈伟), Jun-Lin Li(李俊霖), Chao Qi(齐超), Xiao-Qiang Guo(郭晓强), Rui-Bin Li(李瑞宾), Yan Liu(刘岩). Chin. Phys. B, 2019, 28(10): 104212.
[5] Investigation of flux dependent sensitivity on single event effect in memory devices
Jie Luo(罗捷), Tie-shan Wang(王铁山), Dong-qing Li(李东青), Tian-qi Liu(刘天奇), Ming-dong Hou(侯明东), You-mei Sun(孙友梅), Jing-lai Duan(段敬来), Hui-jun Yao(姚会军), Kai Xi(习凯), Bing Ye(叶兵), Jie Liu(刘杰). Chin. Phys. B, 2018, 27(7): 076101.
[6] Mechanisms of atmospheric neutron-induced single event upsets in nanometric SOI and bulk SRAM devices based on experiment-verified simulation tool
Zhi-Feng Lei(雷志锋), Zhan-Gang Zhang(张战刚), Yun-Fei En(恩云飞), Yun Huang(黄云). Chin. Phys. B, 2018, 27(6): 066105.
[7] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[8] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
[9] Total ionizing radiation-induced read bit-errors in toggle magnetoresistive random-access memory devices
Yan Cui(崔岩), Ling Yang(杨玲), Teng Gao(高腾), Bo Li(李博), Jia-Jun Luo(罗家俊). Chin. Phys. B, 2017, 26(8): 087501.
[10] Pattern dependence in synergistic effects of total dose onsingle-event upset hardness
Hongxia Guo(郭红霞), Lili Ding(丁李利), Yao Xiao(肖尧), Fengqi Zhang(张凤祁), Yinhong Luo(罗尹虹), Wen Zhao(赵雯), Yuanming Wang(王园明). Chin. Phys. B, 2016, 25(9): 096109.
[11] Single-event response of the SiGe HBT in TCAD simulations and laser microbeam experiment
Li Pei (李培), Guo Hong-Xia (郭红霞), Guo Qi (郭旗), Zhang Jin-Xin (张晋新), Xiao Yao (肖尧), Wei Ying (魏莹), Cui Jiang-Wei (崔江维), Wen Lin (文林), Liu Mo-Han (刘默寒), Wang Xin (王信). Chin. Phys. B, 2015, 24(8): 088502.
[12] Experimental verification of the parasitic bipolar amplification effect in PMOS single event transients
He Yi-Bai (何益百), Chen Shu-Ming (陈书明). Chin. Phys. B, 2014, 23(7): 079401.
[13] Single event effect in a ferroelectric-gate field-effect transistor under heavy-ion irradiation
Yan Shao-An (燕少安), Tang Ming-Hua (唐明华), Zhao Wen (赵雯), Guo Hong-Xia (郭红霞), Zhang Wan-Li (张万里), Xu Xin-Yu (徐新宇), Wang Xu-Dong (王旭东), Ding Hao (丁浩), Chen Jian-Wei (陈建伟), Li Zheng (李正), Zhou Yi-Chun (周益春). Chin. Phys. B, 2014, 23(4): 046104.
[14] Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers
Zhang Zhan-Gang (张战刚), Liu Jie (刘杰), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Zhao Fa-Zhan (赵发展), Liu Gang (刘刚), Han Zheng-Sheng (韩郑生), Geng Chao (耿超), Liu Jian-De (刘建德), Xi Kai (习凯), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹), Luo Jie (罗捷), Gu Song (古松), Liu Tian-Qi (刘天奇). Chin. Phys. B, 2013, 22(9): 096103.
[15] Angular dependence of multiple-bit upset response in static random access memories under heavy ion irradiation
Zhang Zhan-Gang (张战刚), Liu Jie (刘杰), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Su Hong (苏弘), Duan Jing-Lai (段敬来), Mo Dan (莫丹), Yao Hui-Jun (姚会军), Luo Jie (罗捷), Gu Song (古松), Geng Chao (耿超), Xi Kai (习凯). Chin. Phys. B, 2013, 22(8): 086102.
No Suggested Reading articles found!