Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120304    DOI: 10.1088/1674-1056/ac9b05
GENERAL Prev   Next  

Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution

Xiao-Ming Chen(陈小明)1,2,3, Lei Chen(陈雷)1,2,†, and Ya-Long Yan(阎亚龙)3
1 Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Beijing Electronic Science and Technology Institute, Beijing 100070, China;
3 University of Science and Technology of China, Hefei 230026, China
Abstract  The existing decoy-state quantum key distribution (QKD) beating photon-number-splitting (PNS) attack provides a more accurate method to estimate the secure key rate, while it still considers that only single-photon pulses can generate secure keys in any case. However, multiphoton pulses can also generate secure keys if we can detect the possibility of PNS attack in the channel. The ultimate goal of this line of research is to confirm the absence of all types of PNS attacks. In particular, the PNS attack mentioned and detected in this paper is only the weaker version of PNS attack which significantly changes the observed values of the legitimate users. In this paper, under the null hypothesis of no weaker version of PNS attack, we first determine whether there is an attack or not by retrieving the missing information of the existing decoy-state protocols, extract a Cauchy distribution statistic, and further provide a detection method and the type I error probability. If the result is judged to be an attack, we can use the existing decoy-state method and the GLLP formula to estimate the secure key rate. Otherwise, the pulses with the same basis received including both single-photon pulses and multiphoton pulses, can be used to generate the keys and we give the secure key rate in this case. Finally, the associated experiments we performed (i.e., the significance level is 5%) show the correctness of our method.
Keywords:  quantum key distribution      photon number splitting      decoy state      hypothesis testing  
Received:  09 May 2022      Revised:  05 September 2022      Accepted manuscript online:  18 October 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Corresponding Authors:  Lei Chen     E-mail:  chenlei1992@bupt.edu.cn

Cite this article: 

Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙) Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution 2022 Chin. Phys. B 31 120304

[1] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7
[2] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501
[5] Gisin N and Thew R 2007 Nat. Photon. 1 165
[6] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[7] Duěk M, Lütkenhaus N and Hendrych M 2006 Prog. Opt. 49 381
[8] Wootters W K and Zurek W H 1982 Nature 299 802
[9] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[10] Lo H K and Chau H F 1999 Science 283 2050
[11] Mayers D 2001 J. ACM 48 351
[12] Renner R 2008 Int. J. Quantum Inf. 6 1
[13] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[14] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[15] Lütkenhaus N 2000 Phys. Rev. A 61 052304
[16] Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
[17] Acín A, Gisin N and Scarani V 2004 Phys. Rev. A 69 012309
[18] Scarani V, Acín A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[19] Tamaki K and Lo H K 2006 Phys. Rev. A 73 010302
[20] Mizutani A, Tamaki K, Ikuta R, Yamamoto T and Imoto N 2014 Sci. Rep. 4 5236
[21] Yin H L, Fu Y, Mao Y and Chen Z B 2016 Sci. Rep. 6 29482
[22] Lu Y S, Cao X Y, Weng C X, Gu J, Xie Y M, Zhou M G, Yin H L and Chen Z B 2021 Opt. Express 29 10162
[23] Inoue K, Waks E and Yamamoto Y 2003 Phys. Rev. A 68 022317
[24] Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[25] Yin H L, Fu Y, Mao Y and Chen Z B 2016 Phys. Rev. A 93 022330
[26] Gu J, Cao X Y, Yin H L and Chen Z B 2021 Opt. Express 29 9165
[27] Korzh B, Lim C C W, Houlmann R, Gisin N, Li M J, Nolan D, Sanguinetti B, Thew R and Zbinden H 2015 Nat. Photon. 9 163
[28] Cao X Y, Gu J, Lu Y S, Yin H L and Chen Z B 2021 New J. Phys. 23 043002
[29] Liu W T, Sun S H, Liang L M and Yuan J M 2011 Phys. Rev. A 83 042326
[30] Liu D, Wang S, Yin Z Q, Chen W and Han Z F 2013 Chin. Sci. Bull. 58 3859
[31] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[32] Wang X B 2005 Phys. Rev. Lett. 94 230503
[33] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[34] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Info. Comput. 4 325
[35] Wang X B 2005 Phys. Rev. A 72 012322
[36] Yu Z W, Zhou Y H and Wang X B 2015 Phys. Rev. A 91 032318
[37] Zhou Y H, Yu Z W, and Wang X B 2016 Phys. Rev. A 93 042324
[38] Wang X B, Yu Z W, and Hu X L 2018 Phys. Rev. A 98 062323
[39] Bassham L, Rukhin A, Soto J, Nechvatal J, Smid M, Leigh S, Levenson M, Vangel M, Heckert N and Banks D 2010 NIST. SP 9 800
[40] Wang L J, Zou K H, Sun W, Mao Y Q, Zhu Y X, Yin H L, Chen Q, Zhao Y, Zhang F, Chen T Y and Pan J 2017 Phys. Rev. A 95 012301
[41] Mao Y Q, Wang B X, Zhao C X, Wang G Q and Pan J W 2018 Opt. Express 26 6010
[42] Yuan Z L, Plews A, Takahashi R, Doi K, Tam W, Sharpe A W, Dixon A R, Lavelle E, Dynes J F, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H and Shields A J 2018 J. Light. Technol. 36 3427
[43] Liu Y, Chen T Y, Wang J, Cai W Q, Wan X, Chen L K, Wang J H, Liu S B, Liang H, Yang L, Peng C Z, Chen K, Chen Z B and Pan J W 2010 Opt. Express 18 8587
[44] Wang X B 2013 Phys. Rev. A 87 012320
[45] Yu Z W, Zhou Y H and Wang X B 2013 Phys. Rev. A 88 062339
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[11] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[14] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[15] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
No Suggested Reading articles found!