Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120303    DOI: 10.1088/1674-1056/ac8f37
GENERAL Prev   Next  

Measurement-device-independent one-step quantum secure direct communication

Jia-Wei Ying(应佳伟)1,2, Lan Zhou(周澜)3, Wei Zhong(钟伟)2, and Yu-Bo Sheng(盛宇波)1,2,†
1 College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The one-step quantum secure direct communication (QSDC) (Sci. Bull. 67, 367 (2022)) can effectively simplify QSDC's operation and reduce message loss. For enhancing its security under practical experimental condition, we propose two measurement-device-independent (MDI) one-step QSDC protocols, which can resist all possible attacks from imperfect measurement devices. In both protocols, the communication parties prepare identical polarization-spatial-mode two-photon hyperentangled states and construct the hyperentanglement channel by hyperentanglement swapping. The first MDI one-step QSDC protocol adopts the nonlinear-optical complete hyperentanglement Bell state measurement (HBSM) to construct the hyperentanglement channel, while the second protocol adopts the linear-optical partial HBSM. Then, the parties encode the photons in the polarization degree of freedom and send them to the third party for the hyperentanglement-assisted complete polarization Bell state measurement. Both protocols are unconditionally secure in theory. The simulation results show the MDI one-step QSDC protocol with complete HBSM attains the maximal communication distance of about 354 km. Our MDI one-step QSDC protocols may have potential applications in the future quantum secure communication field.
Keywords:  measurement-device-independent      one-step quantum secure direct communication      hyperentanglement Bell state measurement      hyperentanglement-assisted complete polarization Bell state measurement  
Received:  02 June 2022      Revised:  21 July 2022      Accepted manuscript online:  05 September 2022
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974189 and 12175106), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB140001), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grand No. KYCX22-0963).
Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波) Measurement-device-independent one-step quantum secure direct communication 2022 Chin. Phys. B 31 120303

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers Systems, and Signal Processing, December 10-12, 1984, Bangalore, India, pp. 175-179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Lo H K, Chau H and Ardehali M 2005 J. Cryptol. 18 133
[4] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[5] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[6] Dellantonio L, Sorensen A S and Bacco D 2018 Phys. Rev. A 98 062301
[7] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China Phys. Mech. Astron. 62 110311
[8] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[9] Ke Z J, Wang Y T, Yu S, et al. 2020 Chin. Phys. B 29 080301
[10] Jin A R, Zeng P, Penty R V and Ma X F 2021 Phys. Rev. Appl. 16 034017
[11] Sun Z Q, Han Y X, Dou T Q, et al. 2021 Chin. Phys. B 30 110303
[12] Chen X T, Zhang L P, Chang S K, Zhang H and Hu L Y 2021 Chin. Phys. B 30 060304
[13] Luo H, Wang Y J, Ye W, Zhong H, Mao Y Y and Guo Y 2022 Chin. Phys. B 31 020306
[14] Wang X B, Yu Z W and Hu X L 2019 Phys. Rev. A 98 062323
[15] Yin H L, Liu P, Dai W W, et al. 2020 Opt. Express 28 29479
[16] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214
[17] Yin Z Q, Lu F Y, Teng J, Wang S, Chen W, Guo G C and Han Z F 2021 Fundamental Res. 1 93
[18] Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B and Liu A Q 2021 AAPPS Bull. 31 15
[19] Guo H, Li Z Y, Yu S and Zhang Y C 2021 Fundamental Res. 1 96
[20] Li B H, Xie Y M, Li Z, et al. 2021 Opt. Lett. 46 5529
[21] Liu W B, Li C L, Xie Y M, et al. 2021 PRX Quantum 2 040334
[22] Xie Y M, Lu Y S, Weng C X, et al. 2022 PRX Quantum 3 020315
[23] Wang S, Yin Z Q, He D Y, et al. 2022 Nat. Photon. 16 154
[24] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[25] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[26] Quan Q, Zhao M J, Fei S M, Fan H, Yang W L, Wang T J and Long G L 2020 Quantum Inf. Process. 19 205
[27] Yan Z H, Qin J L, Qin Z Z, Su X L, Jia X J, Xie C D and Peng K C 2021 Fundamental Res. 1 43
[28] Pandey R K, Prakash R and Prakash H 2021 Quantum Inf. Process. 20 322
[29] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[30] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[31] Williams B P, Lukens J M, Peters N A, Qi B and Grice W P 2019 Phys. Rev. A 99 062311
[32] Wu X D, Wang Y J and Huang D 2020 Phys. Rev. A 101 022301
[33] Lipinska V, Murta G, Ribeiro J and Wehner S 2020 Phys. Rev. A 101 032332
[34] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[35] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[36] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[37] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[38] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light: Sci. Appl. 5 e16144
[39] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[40] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[41] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[42] Zhou Z R, Sheng Y B, Niu P H, Yin L G and Long G L 2020 Sci. China Phys. Mech. Astron. 63 230362
[43] Niu P H, Zhou Z R, Lin Z S, Sheng Y B, Yin L G and Long G L 2020 Sci. Bull. 63 1345
[44] Wu X D, Zhou L, Zhong W and Sheng Y B 2020 Quantum Inf. Process. 19 10354
[45] Hu J Y, Yang L, Wu S X, et al. 2020 Europhys. Lett. 129 10004
[46] Li T and Long G L 2020 New J. Phys. 22 063017
[47] Liu L, Niu J L, Fan C R, Feng X T and Wang C 2020 Quantum Inf. Process. 19 404
[48] Pan D, Lin Z S, Wu J W, et al. 2020 Photon. Res. 8 1522
[49] Long G L and Zhang H R 2021 Sci. Bull. 66 1267
[50] Cao Z W, Wang L, Liang K X, et al. 2021 Phys. Rev. Appl. 16 024012
[51] Qi Z T, Li Y H, Huang W Y, et al. 2021 Light: Sci. Appl. 10 183
[52] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[53] Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L and Lu J H 2022 Light: Sci. Appl. 11 83
[54] Zhou L and Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311
[55] Walborn S P, Pádua S and Monken C H 2003 Phys. Rev. A 68 042313
[56] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[57] Gao C Y, Ren B C, Zhang Y X, Ai Q and Deng F G 2020 Appl. Phys. Express 13 027004
[58] Hu X M, Huang C X, Sheng Y B, et al. 2021 Phys. Rev. Lett. 126 010503
[59] Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L and Lo H K 2014 Phys. Rev. Lett. 112 190503
[60] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[61] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
[62] Loock P V 2011 Laser Photon. Rev. 5 167
[63] Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z and Xie X M 2017 Sci. China Phys. Mech. Astron. 60 120314
[64] Zhang X Y, Zhang W J, Zhou H, et al. 2022 IEEE J. Sel. Top. Quantum Electron. 28 3803708
[65] Li X H and Gohse S 2016 Opt. Express 24 18388
[66] Li X H and Gohse S 2016 Phys. Rev. A 93 022302
[67] Liu Q, Wang G Y, Ai Q, Zhang M and Deng F G 2016 Sci. Rep. 6 22016
[68] Wang G Y, Reng B C, Deng F G and Long G L 2019 Opt. Express 27 8994
[69] Hoi I C, Kockum A F and Palomaki T 2013 Phys. Rev. Lett. 111 053601
[70] Beck K M, Hosseini M, Duan Y and Vuletić V 2016 Proc. Natl. Acad. Sci. USA 113 9740
[71] He B, Sharypov A V, Sheng J T, Simon C and Xiao M 2014 Phys. Rev. Lett. 112 133606
[72] Tiarks D, Schmidt S, Rempe G and Dürr S 2016 Sci. Adv. 2 e1600036
[73] Sinclair J, Angulo D, Lupu-Gladstein N, Bonsma-Fisher K and Steinberg A M 2020 Phys. Rev. Res. 1 033193
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[3] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[4] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] Measurement-device-independent quantum cryptographic conferencing with an untrusted source
Rui-Ke Chen(陈瑞柯), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Hai-Ze Bao(包海泽), Chun Zhou(周淳), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟). Chin. Phys. B, 2017, 26(1): 010302.
[7] Hong-Ou-Mandel interference with two independent weak coherent states
Hua Chen(陈华), Xue-Bi An(安雪碧), Juan Wu(伍娟), Zhen-Qiang Yin(银振强), Shuang Wang(王双), Wei Chen(陈巍), Zhen-Fu Han(韩正甫). Chin. Phys. B, 2016, 25(2): 020305.
[8] Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum
Wang Le (王乐), Zhao Sheng-Mei (赵生妹), Gong Long-Yan (巩龙延), Cheng Wei-Wen (程维文). Chin. Phys. B, 2015, 24(12): 120307.
No Suggested Reading articles found!