Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124204    DOI: 10.1088/1674-1056/ac9220
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-order harmonic generations in tilted Weyl semimetals

Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟)
GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
Abstract  We investigate high-order harmonic generations (HHGs) under comparison of Weyl cones in two types. Due to the hyperboloidal electron pocket structure, strong noncentrosymmetrical generations in high orders are observed around a single type-II Weyl point, especially at zero frequency. Such a remarkable DC signal is proved to have attributions from the intraband transition after spectral decomposition. Under weak pulse electric field, the linear optical response of a non-tilted Weyl cone is consistent with the Kubo theory. With extensive numerical simulations, we conclude that the non-zero chemical potential can enhance the even-order generations, from the slightly tilted system to the over-tilted systems. In consideration of dynamical symmetries, type-I and type-II Weyl cones also show different selective responses under the circularly polarized light. Finally, using a more realistic model containing two pairs of Weyl points, we demonstrate that paired Weyl points with opposite chirality can suppress the overall even-order generations.
Keywords:  high order harmonic generation      nonlinear optics      Weyl semimetals  
Received:  23 May 2022      Revised:  01 September 2022      Accepted manuscript online:  15 September 2022
PACS:  42.65.-k (Nonlinear optics)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: We thank Tatsuhiko N. Ikeda for illuminating discussions. This work was performed at the Chinese Academy of Science Terahertz Science Center, and was supported by the National Natural Science Foundation of China (Grant No. 61988102).
Corresponding Authors:  Zi-Yuan Li     E-mail:  liziyuan3210087@gmail.com

Cite this article: 

Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟) High-order harmonic generations in tilted Weyl semimetals 2022 Chin. Phys. B 31 124204

[1] Boyd R W 2020 Nonlinear Optics (New York: Academic Press)
[2] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
[3] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[4] Schafer K, Yang B, DiMauro L and Kulander K 1993 Phys. Rev. Lett. 70 1599
[5] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[6] Ghimire S and Reis D A 2019 Nat. Phys. 15 10
[7] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, Di-Mauro L F and Reis D A 2011 Nat. Phys. 7 138
[8] Vampa G and Brabec T 2017 J. Phys. B: At. Mol. Opt. Phys. 50 083001
[9] Garg M, Kim H Y and Goulielmakis E 2018 Nat. Photon. 12 291
[10] Li J, Lu J, Chew A, Han S, Li J, Wu Y, Wang H, Ghimire S and Chang Z 2020 Nat. Commun. 11 2748
[11] Sivis M, Duwe M, Abel B and Ropers C 2013 Nat. Phys. 9 304
[12] Han S, Kim H, Kim Y W, Kim Y J, Kim S, Park I Y and Kim S W 2016 Nat. Commun. 7 13105
[13] Vampa G, Ghamsari B, Siadat Mousavi S, et al. 2017 Nat. Phys. 13 659
[14] Vampa G, Hammond T, Thiré N, Schmidt B, Légaré F, McDonald C, Brabec T, Klug D and Corkum P 2015 Phys. Rev. Lett. 115 193603
[15] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403
[16] Lanin A, Stepanov E, Fedotov A and Zheltikov A 2017 Optica 4 516
[17] Li L, Lan P, He L, Cao W, Zhang Q and Lu P 2020 Phys. Rev. Lett. 124 157403
[18] Silva R, Jiménez-Galán Á, Amorim B, Smirnova O and Ivanov M 2019 Nat. Photon. 13 849
[19] Chacón A, Kim D, Zhu W, et al. 2020 Phys. Rev. B 102 134115
[20] Schmid C P, Weigl L, Grössing P, et al. 2021 Nature 593 385
[21] Bai Y, Fei F, Wang S, Li N, Li X, Song F, Li R, Xu Z and Liu P 2021 Nat. Phys. 17 311
[22] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330
[23] Vampa G, McDonald C, Orlando G, Klug D, Corkum P and Brabec T 2014 Phys. Rev. Lett. 113 073901
[24] Vampa G, McDonald C, Orlando G, Corkum P and Brabec T 2015 Phys. Rev. B 91 064302
[25] Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M and Ishikawa K L 2017 Phys. Rev. A 95 043416
[26] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403
[27] Floss I, Lemell C, Wachter G, Smejkal V, Sato S A, Tong X M, Yabana K and Burgdörfer J 2018 Phys. Rev. A 97 011401
[28] Sato S A, Hirori H, Sanari Y, Kanemitsu Y and Rubio A 2021 Phys. Rev. B 103 L041408
[29] Armitage N, Mele E and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[30] Hu J, Xu S Y, Ni N and Mao Z 2019 Annual Review of Materials Research 49 207
[31] Mics Z, Tielrooij K J, Parvez K, Jensen S A, Ivanov I, Feng X, Müllen K, Bonn M and Turchinovich D 2015 Nat. Commun. 6 7655
[32] Yoshikawa N, Tamaya T and Tanaka K 2017 Science 356 736
[33] Hafez H A, Kovalev S, Deinert J C, et al. 2018 Nature 561 507
[34] Shan Y, Li Y, Huang D, Tong Q, Yao W, Liu W T and Wu S 2018 Sci. Adv. 4 eaat0074
[35] Tancogne-Dejean N and Rubio A 2018 Sci. Adv. 4 eaao5207
[36] Alonso Calafell I, Rozema L A, Alcaraz Iranzo D, et al. 2021 Nat. Nanotechnol. 16 318
[37] Cheng B, Kanda N, Ikeda T N, Matsuda T, Xia P, Schumann T, Stemmer S, Itatani J, Armitage N and Matsunaga R 2020 Phys. Rev. Lett. 124 117402
[38] Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373
[39] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[40] Murakami S, Hirayama M, Okugawa R and Miyake T 2017 Sci. Adv. 3 e1602680
[41] Lv B, Weng H, Fu B, et al. 2015 Phys. Rev. X 5 031013
[42] Lv B, Xu N, Weng H, Ma J, et al. 2015 Nat. Phys. 11 724
[43] Xu S Y, Belopolski I, Sanchez D S, et al. 2015 Sci. Adv. 1 e1501092
[44] Arnold F, Naumann M, Wu S C, Sun Y, Schmidt M, Borrmann H, Felser C, Yan B and Hassinger E 2016 Phys. Rev. Lett. 117 146401
[45] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
[46] Xu N, Weng H, Lv B, et al. 2016 Nat. Commun. 7 11006
[47] Xu Y, Zhang F and Zhang C 2015 Phys. Rev. Lett. 115 265304
[48] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[49] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[50] Ma Q, Xu S Y, Shen H, et al. 2019 Nature 565 337
[51] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324
[52] Lai S, Liu H, Zhang Z, et al. 2021 Nat. Nanotechnol. 16 869
[53] Wang C, Xiao R C, Liu H, et al. 2022 Natl. Sci. Rev. 2022 nwac020
[54] Rostami H and Polini M 2018 Phys. Rev. B 97 195151
[55] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38
[56] Xu H, Zhou J and Li J 2021 Adv. Sci. 8 2101508
[57] Bharti A, Mrudul M and Dixit G 2022 Phys. Rev. B 105 155140
[58] Chan C K, Lindner N H, Refael G and Lee P A 2017 Phys. Rev. B 95 041104
[59] Sirica N, Tobey R, Zhao L, et al. 2019 Phys. Rev. Lett. 122 197401
[60] Sirica N, Orth P P, Scheurer M, et al. 2022 Nat. Mater. 21 62
[61] Bhalla P and Rostami H 2022 arXiv:2201.00734 [condmat.mes-hall]
[62] de Juan F, Grushin A G, Morimoto T and Moore J E 2017 Nat. Commun. 8 15995
[63] Wang Q, Zheng J, He Y, et al. 2019 Nat. Commun. 10 5736
[64] Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476
[65] Lv Y Y, Xu J, Han S, et al. 2021 Nat. Commun. 12 6437
[66] Ishikawa K L 2010 Phys. Rev. B 82 201402
[67] Lim J, Ang Y S, de Abajo F J G, Kaminer I, Ang L K and Wong L J 2020 Phys. Rev. Research 2 043252
[68] Ikeda T N 2020 Phys. Rev. Research 2 032015
[69] O'Brien T, Diez M and Beenakker C 2016 Phys. Rev. Lett. 116 236401
[70] Yu Z M, Yao Y and Yang S A 2016 Phys. Rev. Lett. 117 077202
[71] Ishikawa K L 2013 New J. Phys. 15 055021
[72] Chizhova L A, Libisch F and Burgdörfer J 2016 Phys. Rev. B 94 075412
[73] Ikeda T N, Chinzei K and Tsunetsugu H 2018 Phys. Rev. A 98 063426
[74] Carbotte J 2016 Phys. Rev. B 94 165111
[75] Neufeld O, Podolsky D and Cohen O 2019 Nat. Commun. 10 405
[76] McCormick T M, Kimchi I and Trivedi N 2017 Phys. Rev. B 95 075133
[77] Osterhoudt G B, Diebel L K, Gray M J, et al. 2019 Nat. Mater. 18 471
[78] Gao Y, Kaushik S, Philip E, et al. 2020 Nat. Commun. 11 720
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[3] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[4] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[5] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[6] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[10] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[11] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[12] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
No Suggested Reading articles found!