ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High-order harmonic generations in tilted Weyl semimetals |
Zi-Yuan Li(李子元)†, Qi Li(李骐), and Zhou Li(李舟) |
GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China |
|
|
Abstract We investigate high-order harmonic generations (HHGs) under comparison of Weyl cones in two types. Due to the hyperboloidal electron pocket structure, strong noncentrosymmetrical generations in high orders are observed around a single type-II Weyl point, especially at zero frequency. Such a remarkable DC signal is proved to have attributions from the intraband transition after spectral decomposition. Under weak pulse electric field, the linear optical response of a non-tilted Weyl cone is consistent with the Kubo theory. With extensive numerical simulations, we conclude that the non-zero chemical potential can enhance the even-order generations, from the slightly tilted system to the over-tilted systems. In consideration of dynamical symmetries, type-I and type-II Weyl cones also show different selective responses under the circularly polarized light. Finally, using a more realistic model containing two pairs of Weyl points, we demonstrate that paired Weyl points with opposite chirality can suppress the overall even-order generations.
|
Received: 23 May 2022
Revised: 01 September 2022
Accepted manuscript online: 15 September 2022
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
33.57.+c
|
(Magneto-optical and electro-optical spectra and effects)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: We thank Tatsuhiko N. Ikeda for illuminating discussions. This work was performed at the Chinese Academy of Science Terahertz Science Center, and was supported by the National Natural Science Foundation of China (Grant No. 61988102). |
Corresponding Authors:
Zi-Yuan Li
E-mail: liziyuan3210087@gmail.com
|
Cite this article:
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟) High-order harmonic generations in tilted Weyl semimetals 2022 Chin. Phys. B 31 124204
|
[1] Boyd R W 2020 Nonlinear Optics (New York: Academic Press) [2] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 [3] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535 [4] Schafer K, Yang B, DiMauro L and Kulander K 1993 Phys. Rev. Lett. 70 1599 [5] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [6] Ghimire S and Reis D A 2019 Nat. Phys. 15 10 [7] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, Di-Mauro L F and Reis D A 2011 Nat. Phys. 7 138 [8] Vampa G and Brabec T 2017 J. Phys. B: At. Mol. Opt. Phys. 50 083001 [9] Garg M, Kim H Y and Goulielmakis E 2018 Nat. Photon. 12 291 [10] Li J, Lu J, Chew A, Han S, Li J, Wu Y, Wang H, Ghimire S and Chang Z 2020 Nat. Commun. 11 2748 [11] Sivis M, Duwe M, Abel B and Ropers C 2013 Nat. Phys. 9 304 [12] Han S, Kim H, Kim Y W, Kim Y J, Kim S, Park I Y and Kim S W 2016 Nat. Commun. 7 13105 [13] Vampa G, Ghamsari B, Siadat Mousavi S, et al. 2017 Nat. Phys. 13 659 [14] Vampa G, Hammond T, Thiré N, Schmidt B, Légaré F, McDonald C, Brabec T, Klug D and Corkum P 2015 Phys. Rev. Lett. 115 193603 [15] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403 [16] Lanin A, Stepanov E, Fedotov A and Zheltikov A 2017 Optica 4 516 [17] Li L, Lan P, He L, Cao W, Zhang Q and Lu P 2020 Phys. Rev. Lett. 124 157403 [18] Silva R, Jiménez-Galán Á, Amorim B, Smirnova O and Ivanov M 2019 Nat. Photon. 13 849 [19] Chacón A, Kim D, Zhu W, et al. 2020 Phys. Rev. B 102 134115 [20] Schmid C P, Weigl L, Grössing P, et al. 2021 Nature 593 385 [21] Bai Y, Fei F, Wang S, Li N, Li X, Song F, Li R, Xu Z and Liu P 2021 Nat. Phys. 17 311 [22] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330 [23] Vampa G, McDonald C, Orlando G, Klug D, Corkum P and Brabec T 2014 Phys. Rev. Lett. 113 073901 [24] Vampa G, McDonald C, Orlando G, Corkum P and Brabec T 2015 Phys. Rev. B 91 064302 [25] Ikemachi T, Shinohara Y, Sato T, Yumoto J, Kuwata-Gonokami M and Ishikawa K L 2017 Phys. Rev. A 95 043416 [26] Tancogne-Dejean N, Mücke O D, Kärtner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403 [27] Floss I, Lemell C, Wachter G, Smejkal V, Sato S A, Tong X M, Yabana K and Burgdörfer J 2018 Phys. Rev. A 97 011401 [28] Sato S A, Hirori H, Sanari Y, Kanemitsu Y and Rubio A 2021 Phys. Rev. B 103 L041408 [29] Armitage N, Mele E and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [30] Hu J, Xu S Y, Ni N and Mao Z 2019 Annual Review of Materials Research 49 207 [31] Mics Z, Tielrooij K J, Parvez K, Jensen S A, Ivanov I, Feng X, Müllen K, Bonn M and Turchinovich D 2015 Nat. Commun. 6 7655 [32] Yoshikawa N, Tamaya T and Tanaka K 2017 Science 356 736 [33] Hafez H A, Kovalev S, Deinert J C, et al. 2018 Nature 561 507 [34] Shan Y, Li Y, Huang D, Tong Q, Yao W, Liu W T and Wu S 2018 Sci. Adv. 4 eaat0074 [35] Tancogne-Dejean N and Rubio A 2018 Sci. Adv. 4 eaao5207 [36] Alonso Calafell I, Rozema L A, Alcaraz Iranzo D, et al. 2021 Nat. Nanotechnol. 16 318 [37] Cheng B, Kanda N, Ikeda T N, Matsuda T, Xia P, Schumann T, Stemmer S, Itatani J, Armitage N and Matsunaga R 2020 Phys. Rev. Lett. 124 117402 [38] Huang S M, Xu S Y, Belopolski I, et al. 2015 Nat. Commun. 6 7373 [39] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [40] Murakami S, Hirayama M, Okugawa R and Miyake T 2017 Sci. Adv. 3 e1602680 [41] Lv B, Weng H, Fu B, et al. 2015 Phys. Rev. X 5 031013 [42] Lv B, Xu N, Weng H, Ma J, et al. 2015 Nat. Phys. 11 724 [43] Xu S Y, Belopolski I, Sanchez D S, et al. 2015 Sci. Adv. 1 e1501092 [44] Arnold F, Naumann M, Wu S C, Sun Y, Schmidt M, Borrmann H, Felser C, Yan B and Hassinger E 2016 Phys. Rev. Lett. 117 146401 [45] Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613 [46] Xu N, Weng H, Lv B, et al. 2016 Nat. Commun. 7 11006 [47] Xu Y, Zhang F and Zhang C 2015 Phys. Rev. Lett. 115 265304 [48] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [49] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 [50] Ma Q, Xu S Y, Shen H, et al. 2019 Nature 565 337 [51] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324 [52] Lai S, Liu H, Zhang Z, et al. 2021 Nat. Nanotechnol. 16 869 [53] Wang C, Xiao R C, Liu H, et al. 2022 Natl. Sci. Rev. 2022 nwac020 [54] Rostami H and Polini M 2018 Phys. Rev. B 97 195151 [55] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38 [56] Xu H, Zhou J and Li J 2021 Adv. Sci. 8 2101508 [57] Bharti A, Mrudul M and Dixit G 2022 Phys. Rev. B 105 155140 [58] Chan C K, Lindner N H, Refael G and Lee P A 2017 Phys. Rev. B 95 041104 [59] Sirica N, Tobey R, Zhao L, et al. 2019 Phys. Rev. Lett. 122 197401 [60] Sirica N, Orth P P, Scheurer M, et al. 2022 Nat. Mater. 21 62 [61] Bhalla P and Rostami H 2022 arXiv:2201.00734 [condmat.mes-hall] [62] de Juan F, Grushin A G, Morimoto T and Moore J E 2017 Nat. Commun. 8 15995 [63] Wang Q, Zheng J, He Y, et al. 2019 Nat. Commun. 10 5736 [64] Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476 [65] Lv Y Y, Xu J, Han S, et al. 2021 Nat. Commun. 12 6437 [66] Ishikawa K L 2010 Phys. Rev. B 82 201402 [67] Lim J, Ang Y S, de Abajo F J G, Kaminer I, Ang L K and Wong L J 2020 Phys. Rev. Research 2 043252 [68] Ikeda T N 2020 Phys. Rev. Research 2 032015 [69] O'Brien T, Diez M and Beenakker C 2016 Phys. Rev. Lett. 116 236401 [70] Yu Z M, Yao Y and Yang S A 2016 Phys. Rev. Lett. 117 077202 [71] Ishikawa K L 2013 New J. Phys. 15 055021 [72] Chizhova L A, Libisch F and Burgdörfer J 2016 Phys. Rev. B 94 075412 [73] Ikeda T N, Chinzei K and Tsunetsugu H 2018 Phys. Rev. A 98 063426 [74] Carbotte J 2016 Phys. Rev. B 94 165111 [75] Neufeld O, Podolsky D and Cohen O 2019 Nat. Commun. 10 405 [76] McCormick T M, Kimchi I and Trivedi N 2017 Phys. Rev. B 95 075133 [77] Osterhoudt G B, Diebel L K, Gray M J, et al. 2019 Nat. Mater. 18 471 [78] Gao Y, Kaushik S, Philip E, et al. 2020 Nat. Commun. 11 720 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|