Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124205    DOI: 10.1088/1674-1056/ac904c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm

Guo-Quan Qian(钱国权)1, Min-Bo Wu(吴敏波)2, Guo-Wu Tang(唐国武)2,3,†, Min Sun(孙敏)2,‡, Dong-Dan Chen(陈东丹)2, Zhi-Bin Zhang(张志斌)4, Hui Luo(罗辉)4, and Qi Qian(钱奇)2
1 Yunnan Police College, Kunming 650223, China;
2 Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China;
3 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
4 Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract  A 135 mW single-frequency distributed Bragg reflector fiber laser at 1.95 μm was obtained based on a Tm:YAG ceramic-derived all-glass fiber. The fiber laser achieved an optical signal-to-noise ratio of ~ 77 dB. Moreover, the threshold and linewidth of the single-frequency laser were measured to be 15.4 mW and 4.5 kHz, respectively. In addition, the measured relative intensity noise was less than -140 dB· Hz-1 at frequencies of over 10 MHz. The results show that the as-drawn Tm:YAG ceramic-derived all-glass fiber is highly promising for ~ 2 μm single-frequency fiber laser applications.
Keywords:  all-glass fiber      single-frequency      2 μm fiber laser      Tm:YAG ceramic derived  
Received:  08 July 2022      Revised:  04 September 2022      Accepted manuscript online:  08 September 2022
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
Fund: Project supported by the Yunnan Fundamental Research Projects (Grant No. 202201AU070065), Natural Science Foundation of China for Young Scholars (Grant No. 52002131), Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques (Grant No. 2021-04), and the Scientific Research Fund Project of Yunnan Provincial Department of Education (Grant No. 2022J0591).
Corresponding Authors:  Guo-Wu Tang, Min Sun     E-mail:  guowutang@126.com;s452936140@163.com

Cite this article: 

Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇) Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm 2022 Chin. Phys. B 31 124205

[1] Wang W C, Zhou B, Xu S H, Yang Z M and Zhang Q Y 2019 Prog. Mater. Sci. 101 90
[2] Wang C, Hao Q Q, Li W W, Huang H J, Wang S Z, Jiang D P, Liu J, Mei B C and Su L B 2020 Chin. Phys. B 29 074205
[3] Zhang X, Yang F, Feng Z T, Zhao J J, Wei F, Cai H W and Qu R H 2019 Chin. Phys. B 28 074209
[4] Liu J, Dong J F, Wang Y Y, Guo J, Xue Y Y, Xu J, Zhao Y G, Xu X D, Yu H H, Wang Z P, Xu X G, Chen W D and Petrov V 2021 Opt. Lett. 46 4454
[5] He X, Xu S H, Li C, Yang C S, Yang Q, Mo S P, Chen D D and Yang Z M 2013 Opt. Exp. 21 20800
[6] Zhang Z, Shen D Y, Boyland A J, Sahu J K, Clarkson W A and Ibsen M 2008 Opt. Lett. 33 2059
[7] Fu S J, Shi W, Lin J C, Fang Q, Sheng Q, Zhang H W, Wen J W and Yao J Q 2015 Opt. Lett. 40 5283
[8] Walasik W, Traoré D, Amavigan A, Tench R E, Delavaux J M and Pinsard E 2021 J. Lightwave Technol. 39 5096
[9] Fu S J, Shi W, Feng Y, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A and Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49
[10] Wang Q, Geng J H, Luo T and Jiang S B 2009 Opt. Lett. 34 3616
[11] Tang G W, Zhang Y T, Yang D L, Lin W, Huang W H, Tu L, Wu F, Yan N, Qian Q, Wei X M and Yang Z M 2021 Opt. Lett. 46 2027
[12] Geng J H, Wang Q, Luo T, Jiang S B and Amzajerdian F 2009 Opt. Lett. 34 3493
[13] Tang G W, Wen X, Huang K M, Qian G Q, Lin W, Cheng H H, Jiang L C, Qian Q and Yang Z M 2018 Appl. Phys. Exp. 11 032701
[14] Qian G Q, Wang W L, Tang G W, Guan X C, Lin W, Qian Q, Chen D D, Yang C S, Liu J T, Zhou G Y, Xu S H and Yang Z M 2020 Opt. Lett. 45 1047
[15] Fu S J, Shi W, Sheng Q, Shi G N, Zhang H W, Bai X L and Yao J Q 2017 IEEE Photonic. Tech. Lett. 29 853
[16] Wen X, Tang G W, Wang J W, Chen X D, Qian Q and Yang Z M 2015 Opt. Exp. 23 7722
[17] Geng J H, Wu J F, Jiang S B and Yu J R 2007 Opt. Lett. 32 355
[18] Hofmann P, Voigtlander C, Nolte S, Peyghambarian N and Schulzgen A 2013 J. Lightwave Technol. 31 756
[19] Zhang Y M, Wang W W, Li J, Xiao X S, Ma Z J, Guo H T, Dong G P, Xu S H and Qiu J R 2019 J. Am. Ceram. Soc. 102 2551
[20] Liu Z J, Xie Y Y, Cong Z H, Zhao Z G, Jia Z X, Li C Z, Qin G S, Wang S, Gao X B, Shao X B and Zhang X Y 2019 Opt. Lett. 44 4307
[21] Xie Y Y, Liu Z J, Cong Z H, Qin Z G, Wang S, Jia Z X, Li C Z, Qin G S, Gao X B and Zhang X Y 2019 Opt. Exp. 27 3791
[22] Tang G W, Qian G Q, Lin W, Wang W L, Shi Z G, Yang Y, Dai N L, Qian Q and Yang Z M 2019 Opt. Lett. 44 3290
[23] Ballato J, Hawkins T, Foy P, Kokuoz B, Stolen R, McMillen C, Daw M, Su Z, Tritt T M, Dubinskii M, Zhang J, Sanamyan T and Matthewson M J 2009 J. Appl. Phys. 105 53110
[24] Zhang Y M, Qian G Q, Xiao X S, Tian X L, Ding X Q, Ma Z J, Yang L Y, Guo H T, Xu S H, Yang Z M and Qiu J R 2018 J. Am. Ceram. Soc. 101 4627
[25] Dragic P, Law P C, Ballato J, Hawkins T and Foy P 2010 Opt. Exp. 18 10055
[26] Dragic P, Hawkins T, Foy P, Morris S and Ballato J 2012 Nat. Photon. 6 627
[27] Zhang Y M, Qian G Q, Xiao X S, Tian X L, Chen Z, Zhong J P, Ma Z J, Guo H T, Xu S H, Yang Z M and Qiu J R 2018 J. Am. Ceram. Soc. 101 1616
[28] Zheng S P, Li J, Yu C L, Zhou Q L and Chen D P 2016 Opt. Exp. 24 24248
[29] Xie Y Y, Cong Z H, Zhao Z G, Zhang X Y, Zhao X, Zhao W, Shao X B and Liu Z J 2021 J. Lightwave Technol. 39 4769
[30] Zhang Y M and Qiu J R 2018 Proceedings of the Asia Communications and Photonics Conference p. 8595750
[1] A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator
Shuai Huang(黄帅), Qing Wang(王庆), Meng Zhang(张濛), Chaoyong Chen(陈朝勇), Kaixin Wang(王凯鑫), Mingwei Gao(高明伟), Chunqing Gao(高春清). Chin. Phys. B, 2020, 29(8): 084204.
[2] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[3] Development of an injection-seeded single-frequency laser by using the phase modulated technique
Shu-Tao Dai(戴殊韬), Hong-Chun Wu(吴鸿春), Fei Shi(史斐), Jing Deng(邓晶), Yan Ge(葛燕), Wen Weng(翁文), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2018, 27(5): 054212.
[4] Suppressing the preferential σ-polarization oscillation in a high power Nd:YVO4 laser with wedge laser crystal
Zheng Yao-Hui (郑耀辉), Zhou Hai-Jun (周海军), Wang Ya-Jun (王雅君), Wu Zhi-Qiang (邬志强). Chin. Phys. B, 2013, 22(8): 084207.
[5] 330-W single-frequency retrievable multi-tone monolithic fiber amplifier
Wang Xiao-Lin (王小林), Zhou Pu (周朴), Leng Jin-Yong (冷进勇), Du Wen-Bo (杜文博), Xu Xiao-Jun (许晓军). Chin. Phys. B, 2013, 22(4): 044205.
[6] Low noise, continuous-wave single-frequency 1.5-μm laser generated by a singly resonant optical parametric oscillator
Liu Jian-Li(刘建丽), Liu Qin(刘勤), Li Hong(李宏), Li Peng(李鹏), and Zhang Kuan-Shou(张宽收) . Chin. Phys. B, 2011, 20(11): 114215.
No Suggested Reading articles found!