Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116301    DOI: 10.1088/1674-1056/ac7863
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Lattice thermal conduction in cadmium arsenide

R F Chinnappagoudra1,2, M D Kamatagi1,†, N R Patil3, and N S Sankeshwar4
1 Department of Physics, S. S. Government First Grade College, Nargund-582 207, Karnataka, India;
2 Research Resource Centre, Visvesvaraya Technological University, Belagavi-590 018, Karnataka, India;
3 Department of Physics, B V B College of Engineering and Technology, Hubli, Karnataka 580031, India;
4 Department of Physics&Electronics, CHRIST(Deemed to be University), Bangalore-560 029, Karnataka, India
Abstract  Lattice thermal conductivity (LTC) of cadmium arsenide (Cd$_{3}$As$_{2}$) is studied over a wide temperature range (1-400 K) by employing the Callaway model. The acoustic phonons are considered to be the major carriers of heat and to be scattered by the sample boundaries, disorder, impurities, and other phonons via both Umklapp and normal phonon processes. Numerical calculations of LTC of Cd$_{3}$As$_{2}$ bring out the relative importance of the scattering mechanisms. Our systematic analysis of recent experimental data on thermal conductivity (TC) of Cd$_{3}$As$_{2}$ samples of different groups, presented in terms of LTC, $\kappa_{\scriptscriptstyle{\rm L}}$, using a nonlinear regression method, reveals good fits to the TC data of the samples considered for $T< \sim 50 $ K, and suggests a value of 0.2 for the Gruneisen parameter. It is, however, found that for $T> 100 $ K the inclusion of the electronic component of TC, $\kappa_{\rm e}$, incorporating contributions from relevant electron scattering mechanisms, is needed to obtain good agreement with the TC data over the wide temperature range. More detailed investigations of TC of Cd$_{3}$As$_{2}$ are required to better understand its suitability in thermoelectric and thermal management devices.
Keywords:  dirac semimetals      Cd3As2      thermal conductivity      phonon scattering  
Received:  01 April 2022      Revised:  08 June 2022      Accepted manuscript online:  14 June 2022
PACS:  63.20.kp (Phonon-defect interactions)  
  63.20.K- (Phonon interactions)  
  71.55.Ak (Metals, semimetals, and alloys)  
  74.25.F- (Transport properties)  
Fund: This work was supported by University Grants Commission (UGC), India.
Corresponding Authors:  M D Kamatagi     E-mail:  indmallesh@gmail.com

Cite this article: 

R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar Lattice thermal conduction in cadmium arsenide 2022 Chin. Phys. B 31 116301

[1] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
[2] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[3] Liang T, Gibson Q D, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[4] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[5] Crassee I, Sankar R, Lee W L, Akrap A and Orlita M 2018 Phys. Rev. Mater. 2 120302
[6] Rosenberg A J and Harman T C 1959 J. Appl. Phys. 30 1621
[7] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[8] Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037
[9] Zhou T, Zhang C, Zhang H, Xiu F and Yang Z 2016 Inorg. Chem. Front. 3 1637
[10] Wang H, Luo X, Peng K, Sun Z, Shi M, Ma D, Wang N, Wu T, Ying J, Wang Z and Chen X 2019 Adv. Funct. Mater. 29 1902437
[11] Zhang C, Zhou T, Liang S, Cao J, Yuan X, Liu Y, Shen Y, Wang Q, Zhao J, Yang Z and Xiu F 2016 Chin. Phys. B 25 017202
[12] Pariari A, Khan N and Mandal P 2015 arXiv:1502.02264v3 [cond-mat.str-el]
[13] Pariari A, Khan N, Singha R, Satpati B and Mandal P 2016 Phys. Rev. B 94 165139
[14] Hosseini T, Yavarishad N, Alward J, Kouklin Z and Gajdardziska-Josifovska M 2016 Adv. Electron. Mater. 2 1500319
[15] Spitzer D P, Castellion G A and Haacke G 1966 J. Appl. Phys. 37 3795
[16] Armitage and Goldsmid 1969 J. Phys. C: Solid State Phys. 2 2138
[17] De Combarieu A and Jay-Gerin J P 1982 Phys. Rev. B 25 2923
[18] Bartkowski K, Rafalowicz J and Zdanowicz W 1986 J. Thermophys. 7 765
[19] Yue S, Chorsi H T, Goyal M, Schumann T, Yang R, Xu T, Deng B, Stemmer S, Schuller J A and Liao B 2019 Phys. Rev. Res. 1 033101
[20] Das Sarma S, Hwang E H and Min H 2015 Phys. Rev. B 91 035201
[21] Lundgren R, Laurell P and Fiete G A 2014 Phys. Rev. B 90 165115
[22] Amarnath R, Bhargavi K S and Kubakaddi S S 2020 J. Phys.: Condens. Matter 32 225704
[23] Callaway J 1959 Phys. Rev. 113 1046
[24] Berman R 1976 Thermal Conduction in Solids (Oxford: Clarendon Press)
[25] Bhandari C M and Rowe D M 1988 Thermal Conduction in Semiconductors (New York: Wiley)
[26] Klemans P G, in Seitz F and Turnbull D (eds.) 1958 Solid State Physics (New York: Academic) Vol. 7 p. 7
[27] Wan X, Ma D, Pan D, et al. 2021 Mater. Today Phys. 20 100445
[28] Lu L, Ma D, Zhong M and Zhang L 2022 New J. Phys. 24 013007
[29] Kamatagi M D, Sankeshwar N S and Mulimani B G 2007 Diamond Rel. Mater. 16 98
[30] Morelli D T, Heremans J P and Slack G A 2002 Phys. Rev. B 66 195304
[31] Asen-Plamer M, Bartkowski K, Gmelin E, Zhernov A P, Inyushkin A V, Taldenkov A, Ozhogin V I, Itoh K M and Haller E F 1997 Phys. Rev. B 56 9431
[32] Herring C 1954 Phys. Rev. 95 954
[33] Kubakaddi S S 2019 J. Appl. Phys. 126 135703
[34] Jackson H E and Walker C T 1971 Phys. Rev. B 3 1428
[35] Zhu J, Feng T, Mills S, Wang P, Wu X, Zhang L, Pantelides S T, Du X and Wang X 2018 ACS Appl. Mater. 47 407407
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[10] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[11] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[12] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[13] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
No Suggested Reading articles found!