R F Chinnappagoudra1,2, M D Kamatagi1,†, N R Patil3, and N S Sankeshwar4
1 Department of Physics, S. S. Government First Grade College, Nargund-582 207, Karnataka, India; 2 Research Resource Centre, Visvesvaraya Technological University, Belagavi-590 018, Karnataka, India; 3 Department of Physics, B V B College of Engineering and Technology, Hubli, Karnataka 580031, India; 4 Department of Physics&Electronics, CHRIST(Deemed to be University), Bangalore-560 029, Karnataka, India
Abstract Lattice thermal conductivity (LTC) of cadmium arsenide (CdAs) is studied over a wide temperature range (1-400 K) by employing the Callaway model. The acoustic phonons are considered to be the major carriers of heat and to be scattered by the sample boundaries, disorder, impurities, and other phonons via both Umklapp and normal phonon processes. Numerical calculations of LTC of CdAs bring out the relative importance of the scattering mechanisms. Our systematic analysis of recent experimental data on thermal conductivity (TC) of CdAs samples of different groups, presented in terms of LTC, , using a nonlinear regression method, reveals good fits to the TC data of the samples considered for K, and suggests a value of 0.2 for the Gruneisen parameter. It is, however, found that for K the inclusion of the electronic component of TC, , incorporating contributions from relevant electron scattering mechanisms, is needed to obtain good agreement with the TC data over the wide temperature range. More detailed investigations of TC of CdAs are required to better understand its suitability in thermoelectric and thermal management devices.
Fund: This work was supported by University Grants Commission (UGC), India.
Corresponding Authors:
M D Kamatagi
E-mail: indmallesh@gmail.com
Cite this article:
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar Lattice thermal conduction in cadmium arsenide 2022 Chin. Phys. B 31 116301
[1] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun.5 3786 [2] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater.13 677 [3] Liang T, Gibson Q D, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater.14 280 [4] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B88 125427 [5] Crassee I, Sankar R, Lee W L, Akrap A and Orlita M 2018 Phys. Rev. Mater.2 120302 [6] Rosenberg A J and Harman T C 1959 J. Appl. Phys.30 1621 [7] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys.90 015001 [8] Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X5 031037 [9] Zhou T, Zhang C, Zhang H, Xiu F and Yang Z 2016 Inorg. Chem. Front.3 1637 [10] Wang H, Luo X, Peng K, Sun Z, Shi M, Ma D, Wang N, Wu T, Ying J, Wang Z and Chen X 2019 Adv. Funct. Mater.29 1902437 [11] Zhang C, Zhou T, Liang S, Cao J, Yuan X, Liu Y, Shen Y, Wang Q, Zhao J, Yang Z and Xiu F 2016 Chin. Phys. B25 017202 [12] Pariari A, Khan N and Mandal P 2015 arXiv:1502.02264v3 [cond-mat.str-el] [13] Pariari A, Khan N, Singha R, Satpati B and Mandal P 2016 Phys. Rev. B94 165139 [14] Hosseini T, Yavarishad N, Alward J, Kouklin Z and Gajdardziska-Josifovska M 2016 Adv. Electron. Mater.2 1500319 [15] Spitzer D P, Castellion G A and Haacke G 1966 J. Appl. Phys.37 3795 [16] Armitage and Goldsmid 1969 J. Phys. C: Solid State Phys.2 2138 [17] De Combarieu A and Jay-Gerin J P 1982 Phys. Rev. B25 2923 [18] Bartkowski K, Rafalowicz J and Zdanowicz W 1986 J. Thermophys.7 765 [19] Yue S, Chorsi H T, Goyal M, Schumann T, Yang R, Xu T, Deng B, Stemmer S, Schuller J A and Liao B 2019 Phys. Rev. Res.1 033101 [20] Das Sarma S, Hwang E H and Min H 2015 Phys. Rev. B91 035201 [21] Lundgren R, Laurell P and Fiete G A 2014 Phys. Rev. B90 165115 [22] Amarnath R, Bhargavi K S and Kubakaddi S S 2020 J. Phys.: Condens. Matter32 225704 [23] Callaway J 1959 Phys. Rev.113 1046 [24] Berman R 1976 Thermal Conduction in Solids (Oxford: Clarendon Press) [25] Bhandari C M and Rowe D M 1988 Thermal Conduction in Semiconductors (New York: Wiley) [26] Klemans P G, in Seitz F and Turnbull D (eds.) 1958 Solid State Physics (New York: Academic) Vol. 7 p. 7 [27] Wan X, Ma D, Pan D, et al. 2021 Mater. Today Phys.20 100445 [28] Lu L, Ma D, Zhong M and Zhang L 2022 New J. Phys.24 013007 [29] Kamatagi M D, Sankeshwar N S and Mulimani B G 2007 Diamond Rel. Mater.16 98 [30] Morelli D T, Heremans J P and Slack G A 2002 Phys. Rev. B66 195304 [31] Asen-Plamer M, Bartkowski K, Gmelin E, Zhernov A P, Inyushkin A V, Taldenkov A, Ozhogin V I, Itoh K M and Haller E F 1997 Phys. Rev. B56 9431 [32] Herring C 1954 Phys. Rev.95 954 [33] Kubakaddi S S 2019 J. Appl. Phys.126 135703 [34] Jackson H E and Walker C T 1971 Phys. Rev. B3 1428 [35] Zhu J, Feng T, Mills S, Wang P, Wu X, Zhang L, Pantelides S T, Du X and Wang X 2018 ACS Appl. Mater.47 407407
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.