Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104207    DOI: 10.1088/1674-1056/ac6ee9
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect

Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴)
Advanced Photonic Technology Laboratory, College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The high degree of freedom and novel nonlinear phenomena of multimode fiber are attracting attention. In this work, we demonstrate a spatiotemporal mode-locked multimode fiber laser, which relies on microfiber knot resonance (MKR) via dissipative four-wave-mixing (DFMW) to achieve high-repetition-rate pulses. Apart from that, DFMW mode locking with switchable central wavelengths can also be obtained. It was further found that high pulse energy induced nonlinear effect of the dominant mode-locking mechanism transforming from DFMW to nonlinear Kerr beam cleaning effect (NL-KBC). The experimental results are valuable for further comprehending the dynamic characteristics of spatiotemporal mode-locked multimode fiber lasers, facilitating them much more accessible for applications.
Keywords:  microfiber knot resonance (MKR)      dissipative four-wave-mixing (DFMW)      nonlinear Kerr beam cleaning effect (NL-KBC)      multimode fiber laser  
Received:  26 March 2022      Revised:  03 May 2022      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 91950105 and 62175116) and the 1311 Talent Plan of Nanjing University of Posts and Telecommunications.
Corresponding Authors:  Zu-Xing Zhang     E-mail:  zxzhang@njupt.edu.cn

Cite this article: 

Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴) Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect 2022 Chin. Phys. B 31 104207

[1] Essiambre R, Kramer G, Winzer P, Foschini G and Goebel B 2010 J. Lightwave Technol. 28 662
[2] Yam S H and Achten F 2007 J. Opt. Netw. 6 527
[3] Torres C V, Schroder J, Fulop A L, Mazur M, Lundberg L, Helgason O, Karlsson M and Andreksonet P 2019 J. Lightwave Technol. 37 1663
[4] Harun S W, Saidin N, Zen D I M, Ali N M, Ahmad H, Ahmad F and Dimyati K 2013 Chin. Phys. Lett. 30 094204
[5] Nava G, Osellame R, Ramponi R and Vishnubhatla K C 2013 Opt. Mater. Express 3 612
[6] Huang Y, Xie X, Li M, Xu M and Long J 2021 Opt. Express 29 4453
[7] Harshavardhan Reddy P, Kadir N A A, Paul M C, Das S, Dhar A, Ismail E I, Latiff A A and Harun S W 2017 Chin. Phys. Lett. 34 084203
[8] Gu C, Zuo Z, Luo D, Peng D, Di Y, Zou X, Yang L and Li W 2019 Opt. Lett. 44 5848
[9] Cheng H, Wang W, Zhou Y, Qiao T, Lin W, Guo Y, Xu S and Yang Z 2018 Opt. Express 26 16411
[10] Zhao Q, Gao G, Cong Z, Zhang Z, Liu G, Liu Z, Zhang X and Zhao Z 2022 Opt. Express 30 3611
[11] Zhao Z, Jin L, Set S Y and Yamashita S 2021 Opt. Lett. 46 3621
[12] Sakamoto T and Yoshioka K 2021 Opt. Lett. 46 4642
[13] Magne J, Bolger J, Rochette M, LaRochelle S, Chen L R, Eggleton B J and Azana J 2006 J. Lightwave Technol. 24 2091
[14] Hong K H, Siddiqui A, Moses J, Gopinath J, Hybl J, Ilday F O, Fan T Y and Kartner F X 2008 Opt. Lett. 33 2473
[15] Regan B J, Nikogosyan D N, Paipulas D, Kudriaov V and Sirutkaitis V 2012 Opt. Fiber Technol. 18 88
[16] Krcmarík D, Slavík R, Park Y and Azana J 2009 Opt. Express 17 7074
[17] Yoshida E and Nakazawa M 1997 Opt. Lett. 22 1409
[18] Jasim A A, Zulkifli A Z, Muhammad M Z, Ahmad H and Harun S W 2012 Chin. Phys. Lett. 29 084204
[19] Guan H, Li Z Y, Shen H H, Wang R and Yu Y D 2017 Chin. Phys. Lett. 34 084204
[20] Peccianti M, Pasquazi A, Park Y, Little B E, Chu S T, Moss D J and Morandotti R 2012 Nat. Commun. 3 85
[21] Ding Z X, Huang Z N, Chen Y, Mou C B, Lu Y Q and Xu F 2020 Adv. Photon. 2 026002
[22] Liu M, Tang R, Luo A P, Xu W and Luo Z C 2018 Photon. Res. 6 C1
[23] Tegin U, Rahmani B, Kakkava E, Psaltis D and Moser C 2020 Adv. Photon. 2 056005
[24] Niang A, Levchenko A, Semjonov S, Lipatov D and Egorova O 2020 Photon. J. 12 1
[25] Tegin U and Ortaç B 2017 Photon. Technol. Lett. 24 1
[26] Hansson T, Tonello A, Mansuryan T, Mangini F, Zitelli M, Ferraro M, Niang A, Crescenzi R, Wabnitz S and Couderc V 2020 Opt. Express 28 24005
[27] Qin H, Xiao X, Wang P and Yang C 2018 Opt. Lett. 43 1982
[28] Tegin U, Kakkava E, Rahmani B, Psaltis D and Moser C 2019 Optica 6 1412
[29] Ma Z L, Long J G, Lin W, Hong W, Cui H, Luo Z, Xu W, Likhachev M, Aleshkina S, Mashinsky V, Yashkov M and Luo A 2021 Opt. Express 29 9465
[30] Wright L G, Wabnitz S, Christodoulides D and Wise F W 2015 J. Lightwave Technol. 115 223902
[31] Coen S and Haelterman M 2001 Opt. Lett. 26 39
[32] Chen G, Li W, Wang G, Zhang W, Zeng C and Zhao W 2019 Photon. Res. 7 187
[33] Qiu M W, Chen M M and Zhang Z X 2021 Photon. Technol. Lett. 33 1073
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[6] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[7] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[8] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[9] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[10] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[11] All-fiber laser seeded femtosecond Yb:KGW solid state regenerative amplifier
Renchong Lv(吕仁冲), Hao Teng(滕浩), Jiajun Song(宋贾俊), Renzhu Kang(康仁铸), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(9): 094206.
[12] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[13] Solar energy full-spectrum perfect absorption and efficient photo-thermal generation
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强). Chin. Phys. B, 2021, 30(8): 084206.
[14] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[15] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
No Suggested Reading articles found!