CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures |
Wenyu Huang(黄文宇)1, Cangmin Wang(王藏敏)1, Yichao Liu(刘艺超)1, Shaoting Wang(王绍庭)2, Weifeng Ge(葛威锋)1, Huaili Qiu(仇怀利)1, Yuanjun Yang(杨远俊)1,†, Ting Zhang(张霆)1,‡, Hui Zhang(张汇)3, and Chen Gao(高琛)4 |
1 School of Physics, Hefei University of Technology, Hefei 230009, China; 2 School of Microelectronics, Hefei University of Technology, Hefei 230009, China; 3 Hefei National Laboratory for Physical Sciences at Microscale(HFNL), University of Science and Technology of China, Hefei 230026, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Because of the wide selectivity of ferromagnetic and ferroelectric (FE) components, electric-field (E-field) control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures. Here, an MgO-based magnetic tunnel junction (MTJ) is chosen rationally as the ferromagnetic constitution and a high-activity (001)-Pb(Mg$_{1/3}$Nb$_{2/3}$)$_{0.7}$Ti$_{0.3}$O$_{3}$ (PMN-0.3PT) single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure. The shape of tunneling magnetoresistance (TMR) versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias. The E-field-controlled change in the TMR ratio is up to $-$0.27% without magnetic-field bias. Moreover, when a typical magnetic field ($\sim \pm 10$ Oe) is applied along the minor axis of the MTJ, the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias. This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ. In addition, based on such a multiferroic heterostructure, a strain-gauge factor up to approximately 40 is achieved, which decreases further with a sign change from positive to negative with increasing magnetic fields. This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.
|
Received: 16 November 2021
Revised: 11 January 2022
Accepted manuscript online: 07 February 2022
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072102 and 11775224). It was also partially funded through the Open Foundation of the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020002). The authors greatly appreciate the beamlines BL07W, BL11U and BL12B-α at the National Synchrotron Radiation Laboratory (Grant No. NSRL) for multiferroic device fabrication and characterization. In particular, the authors would like to sincerely thank Xiao's group for providing MTJ samples. |
Corresponding Authors:
Yuanjun Yang, Ting Zhang
E-mail: yangyuanjun@hfut.edu.cn;zhangting@hfut.edu.cn
|
Cite this article:
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛) Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures 2022 Chin. Phys. B 31 097502
|
[1] Song X, Gao X S and Liu J M 2018 Acta Phys. Sin. 67 157512 (in Chinese) [2] Arne B, Andrew D K and Hideo O 2012 Nat Mater 11 372 [3] Liu Y K, Yin Y W and Li X G 2013 Chin. Phys. B 22 087502 [4] Chen A T and Zhao Y G 2018 Acta Phys. Sin. 67 157513 (in Chinese) [5] Tulapurkar A A, Suzuki Y, Fukushima A, Kubota H, Maehara H, Tsunekawa K, Djayaprawira D D, Watanabe N and Yuasa S 2005 Nature 438 339 [6] Hai P N, Ohya S, Tanaka M, Barnes S E and Maekaw S 2009 Nature 458 489 [7] Tezuka N, Oikawa S, Matsuura M, Sugimoto S, Nishimura K, Irisawa T, Nagamine Y and Tsunekawa K 2018 AIP Advances 8 055922 [8] Kanai S, Nakatani Y, Yamanouchi M, Ikeda S, Matsukura F and Ohno H 2013 Appl. Phys. Lett. 103 072408 [9] Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P and Wang K L 2016 Appl. Phys. Lett. 108 012403 [10] Yu B, Hu Z Q, Cheng Y X, Peng B, Zhou Z Y and Liu M 2018 Acta Phys. Sin. 67 157507 (in Chinese) [11] Hu J M, Li Z, Chen L Q and Nan C W 2011 Nat. Commun. 2 553 [12] Peng Z L, Han X F, Zhao S F, Wei H X, Du G X and Zhan W S 2006 Acta Phys. Sin. 55 860 (in Chinese) [13] Li Q Y, Zhang P H, Li H T, Lina Chen, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504 [14] Roschewsky N, Schafer S, Hellman F and Nikitin V 2018 Appl. Phys. Lett. 112 232401 [15] Meyners D, Hofe T. von, Vieth M, Rührig M, Schmitt S and Quandt E 2009 J. Appl. Phys. 105 07C914 [16] Tavassolizadeh A, Rott K, Meier T, Quandt E, Hölscher H, Reiss G and Meyners D 2016 Sensors 16 1902 [17] Pertsev N A and Kohlstedt H 2009 Appl. Phys. Lett. 95 163504 [18] Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H and Han X 2014 Adv. Mater. 26 4320 [19] Zhao Z, Jamali M, D'Souza N, Zhang D, Bandyopadhyay S, Atulasimha J and Wang J P 2016 Appl. Phys. Lett. 109 092403 [20] Naik V B, Meng H, Liu R S, Luo P, Yap S and Han G C 2014 Appl. Phys. Lett. 104 232401 [21] Fu Q W, Zhou K Y, Lina Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501 [22] He H, Zhao J T, Luo Z L, Yang Y J, Xu H, Hong B, Wang L X, Wang R X and Gao C 2016 Chin. Phys. Lett. 33 067502 [23] Chen A, Wen Y, Fang B, Zhao Y, Zhang Q, Chang Y, Li P, Wu H, Huang H, Lu Y, Zeng Z, Cai J, Han X, Wu T, Zhang X X and Zhao Y 2019 Nat. Commun. 10 243 [24] Yang Y, Luo Z, Wang S, Huang W, Wang G, Wang C, Yao Y, Li H, Wang Z, Zhou J, Dong Y, Guan Y, Tian Y, Feng C, Zhao Y, Gao C and Xiao G 2021 iScience 24 102734 [25] Herklotz A, Gai Z, Sharma Y, Huon A, Rus S F, Sun L, Shen J, Rack P D and Ward T Z 2018 Adv. Sci. 5 1800356 [26] Chen A T, Zhao Y G, Li P S, Zhang X, Peng R C, Huang H L, Zou L K, Zheng X L, Zhang S, Miao P X, Lu Y L, Cai J W and Nan C W 2016 Adv. Mater. 28 363 [27] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721 [28] Kent A D 2010 Nat. Mater. 9 699 [29] Wang M, Zhang Y, Zhao X and Zhao W 2015 Micromachines 6 1023 [30] Khanal P, Zhou B, Andrade M, Dang Y, Davydov A, Habiboglu A, Saidian J, Laurie A, Wang J P, Gopman D B and Wang W 2021 Appl. Phys. Lett. 119 242404 [31] Liu Y, Zhang Z, Freitas P P and Martins J L 2003 Appl. Phys. Lett. 82 2871 [32] Liu H, Wang R, Guo P, Wen Z, Feng J, Wei H, Han X, Ji Y and Zhang S 2015 Sci. Rep. 5 18269 [33] Shen W, Mazumdar D, Zou X, Liu X, Schrag B D and Gang X 2006 Appl. Phys. Lett. 88 182508 [34] Lou J, Reed D, Liu M, Pettiford C and Sun N X 2009 IEEE MTTS Int. Microwave Symp. Dig. 33 [35] Schrag B D, Anguelouch A, Ingvarsson S, Xiao G, Lu Y, Trouilloud P L, Gupta A, Wanner R A, Gallagher W J, Rice P M and Parkin S S P 2000 Appl. Phys. Lett. 77 2373 [36] Stobiecki T, Kim C G, Kim C O, Hu Y K, Czapkiewicz M, Kanak J, Wrona J, Tsunoda M and Takahashi M 2004 J. Magn. Magn. Mater. 272 E1503 [37] Zhang W, Hao Q and Xiao G 2011 Phys. Rev. B 84 094446 [38] Chen J Y, Lau Y C, Coey J M D, Li M and Wang J P 2017 Sci. Rep. 7 42001 [39] Chen A, Zhao Y, Wen Y, Pan L, Li P and Zhang X X 2019 Sci. Adv. 5 5141 [40] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472 [41] Binasch G, Grüberg P, Saurenbach F and W Zinn 1989 Phys. Rev. B Condens. Matter. 39 4828 [42] Ziss D, Martín-Sánchez J, Lettner T, Halilovic A, Trevisi G, Trotta R, Rastelli A and Stangl J 2017 J. Appl. Phys. 121 135303 [43] Liu M, Li S, Obi O, Lou J, Rand S and Sun N X 2011 Appl. Phys. Lett. 98 222509 [44] Julliere M 1975 Phys. Lett. A 54 225 [45] Simmons J G 1963 J. Appl. Phys. 34 1793 [46] Hsu C J, Hockel J L and Carman G P 2012 Appl. Phys. Lett. 100 092902 [47] Zhu M, Zhou Z, Peng B, Zhao S, Zhang Y, Niu G, Ren W, Ye Z G, Liu Y and Liu M 2017 Adv. Funct. Mater. 27 1605598 [48] Klimov A, Tiercelin N, Dusch Y, Giordano S, Mathurin T, Pernod P, Preobrazhensky V, Churbanov A and Nikitov S 2017 Appl. Phys. Lett. 110 222401 [49] Window A L 1992 Strain Gauge Technology (Springer) [50] Löhndorf M, Duenas T, Tewes M, Quandt E, Rührig M and Wecker J 2002 Appl. Phys. Lett. 81 313 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|