Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087801    DOI: 10.1088/1674-1056/ac5e9a

High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system

Wenjia Yuan(袁文佳)1, Weidong Shen(沈伟东)1,†, Chen Xie(谢辰)2, Chenying Yang(杨陈楹)1, and Yueguang Zhang(章岳光)1
1 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2 Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  We present a high-dispersive multilayer mirror for pulse stretching in a femtosecond fiber laser amplification system. The designed mirror contains 54 layers with a total physical thickness of 7.3 μm, which can provide a positive group delay dispersion (GDD) of 600 fs2 and a high reflectance over 99.9% from 1010 to 1070 nm. The samples were prepared by dual ion beam sputtering. The measured transmittance matches well with the theoretical result. The GDD characteristics of samples were tested by home-made white light interferometer. The measured GDD is higher than the design results, an average GDD of +722 fs2 from 1010 nm to 1070 nm. The mirrors were employed in a Yb-doped large-mode-area photonic crystal fiber amplification system. An input pulse compressed by the gratings with autocorrelation function of 83 fs is obtained with a stretched FWHM of 1.29 ps after 28 bounces between the dispersive mirrors. The results show that the multilayer dispersive mirror could be an effective and promising technique for pulse stretching in femtosecond amplification systems.
Keywords:  optical coatings      dispersive mirror      ultrafast optics      pulse stretching  
Received:  30 December 2021      Revised:  13 March 2022      Accepted manuscript online:  17 March 2022
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  42.79.Wc (Optical coatings)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61705194).
Corresponding Authors:  Weidong Shen     E-mail:

Cite this article: 

Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光) High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system 2022 Chin. Phys. B 31 087801

[1] Szipöcs R, Ferencz K, Spielmann C and Krausz F 1994 Opt. Lett. 19 201
[2] Stingl A, Lenzner M, Spielmann C, Krausz F and Szipöcs R 1995 Opt. Lett. 20 602
[3] Kärtner F, Matuschek N and Keller U 1997 Opt. Lett. 22 831
[4] Kärtner F, Morgner U, Ell R, Schibli T, Fujimoto J, Ippen E, V Scheuer, Angelow G and Tschudi T 2001 J. Opt. Soc. Am. B 18 882
[5] Pervak V, Tikhonravov A, Trubetskov M, Naumov S, Krausz F and Apolonski A 2007 Appl. Phys. B 87 5
[6] Steinmeyer G 2006 Appl. Opt. 45 1484
[7] Pervak V, Ahmad I, Trushin S, Major Z, Apolonski A, Karsch S and Krausz F 2009 Opt. Express 17 19204
[8] Pervak V 2011 Appl. Opt. 50 C55
[9] Razskazovskaya O, Krausz F and Pervak V 2017 Optica 4 129
[10] Habel F, Trubetskov M and Pervak V 2016 Opt. Express 24 16705
[11] Ma Q, Zhang Y, Shen W, Luo Z, Zhang Q, Zhang S, Ye P, Yuan W, Liu X and Wei Z 2011 Acta Phys. Sin. 60 027804 (in Chinese)
[12] Qin S, Wang Z, Yang S, Shen Z, Dong Q and Wei Z 2017 Chin. Phys. Lett. 34 024205
[13] Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X and Zhao Z 2020 Chin. Phys. Lett. 37 114202
[14] Pervak V Amotchkina T, Hahner D, Jung S and Krausz F 2019 Opt. Express 27 34901
[15] Ma P, Chen Y, Amotchkina T, Trubetskov M and Li L 2020 Opt. Express 28 29230
[16] Ruehl A, Prochnow O, Schultz M, Wandt D and Kracht D 2007 Opt. Lett. 32 2590
[17] Logvin Y, Kalosha V and Anis H 2007 Opt. Express 15 985
[18] Zhou S, Kuznetsova L, Chong A and Wise F 2005 Opt. Express 13 4869
[19] Zaouter Y, Papadopoulos D, Hanna M, Druon F, Cormier E and Georges P 2007 Opt. Express 15 9372
[20] Xie C, Liu B, Niu H, Song Y, Li Y, Hu M, Zhang Y, Shen W, Liu X and Wang C 2011 Opt. Lett. 36 4149
[21] Niu H, Shen W, Li C, Zhang Y, Xie C, Yu P, Yuan W, Liu B, Hu M, Wang Q and Liu X 2012 Appl. Phys. B 108 609
[1] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[2] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[3] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[4] Frequency dependence of quantum path interference in non-collinear high-order harmonic generation
Shi-Yang Zhong(钟诗阳), Xin-Kui He(贺新奎), Hao Teng(滕浩), Peng Ye(叶蓬), Li-Feng Wang(汪礼锋), Peng He(何鹏), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(2): 023301.
No Suggested Reading articles found!