Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074211    DOI: 10.1088/1674-1056/ac40f9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber

Yong Li(李勇)1,2,3, Haoshi Zhang(张浩石)2,3,†, Xiaowei Wang(王晓伟)1, and Jing Jin(金靖)1
1 School of Instrument Science and Optic-electronics Engineering, Beihang University, Beijing 100191, China;
2 Beijing Institute of Control Engineering, Beijing 100094, China;
3 Science and Technology on Space Intelligent Control Laboratory, Beijing 100094, China
Abstract  A radiation-temperature coupling model of optical fiber attenuation spectrum has been developed. The spectrum in Ge/P co-doped fiber ranging from 800 nm-1600 nm at different temperatures and doses was measured and decomposed according to the configurational coordinate model based on which the power-law model was employed to predict the intensity of the color center absorption band at different doses. And the fiber loss in space was predicted by the model. This work will benefit the application of fibers in a complicated radiation environment.
Keywords:  radiation      temperature      color centers      optical fiber  
Received:  11 November 2021      Revised:  03 December 2021      Accepted manuscript online:  08 December 2021
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  92.60.hv (Pressure, density, and temperature)  
  61.72.jn (Color centers)  
  42.81.-i (Fiber optics)  
Corresponding Authors:  Haoshi Zhang     E-mail:  zhs2016@buaa.edu.cn

Cite this article: 

Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖) A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber 2022 Chin. Phys. B 31 074211

[1] Xu J, Zhao S, Hou R, Yang S, Zhang T, Ni Y, Wu J and Li Y 2010 Optik 121 199
[2] Berghmans F, Brichard B, Fernandez A, Gusarov A, Van Uffelen M and Girard S 2008 Optical Waveguide Sensing and Imaging Netherlands:Springer p. 127
[3] Tomashuk A L, Golant K M, Dianov E M, Medvedkov O I, Plaksin O A, Stepanov V A, Stepanov P A, Demenkov P V, Chernov V M and Klyamkin S N 2000 IEEE Trans. Nucl. Sci. 47 693
[4] Jin J and Lin S 2012 Opt. Lasers Eng. 50 1542
[5] Girard S, Vivona M, Laurent A, Cadier B, Marcandella C, Robin T, Pinsard E, Boukenter A and Ouerdane Y 2012 Opt. Express 20 8457
[6] Kashaykin P F, Tomashuk A L, Salgansky M Y, Abramov A N and Nishchev K N 2015 J. Lightwave Technol. 33 1788
[7] Jin J, Hou Y and Liu C 2015 Appl. Opt. 54 940
[8] Sporea D, Mihai L, Sporea A, et al. 2014 Opt. Express 22 31473
[9] Wijnands T, De Jonge L K, Kuhnhenn J, Hoeffgen S K and Weinand U 2008 IEEE Trans. Nucl. Sci. 55 2216
[10] Morita Y and Kawakami W 1989 IEEE Trans. Nucl. Sci. 36 584
[11] Borgermans P and Brichard B 2002 Nucl. Sci. 49 1439
[12] Williams G M, Putman M A and Friebele J E 1996 Proc. SPIE 1996 30
[13] Morita Y and Kawakami W 1989 IEEE Trans. Nucl. Sci. 36 584
[14] Griscom D L 2001 Phys. Rev. B 64 174201
[15] Sporea D, Mihai L, Sporea A, Lixandru A and Bräuer-Krisch E 2014 Opt. Express 22 31473
[16] Jin J, Liu J, Wang X, Guo J and Song N 2013 J. Lightwave Technol. 31 839
[17] Jin J, Liu C, Liu J and Hou Y 2016 Chin. Opt. Lett. 14 030601
[18] Zhang Y, Lin B, Swee C T, Zhang H, Wang G, Shum P and Zhang X 2010 Opt. Express 18 26345
[19] Brichard B, Borgermans P, Berghmans F, Decreton M C, Tomashuk A L, Nikolin I V and Golant K M 1999 Proc. SPIE 1999 36
[20] Regnier E, Flammer I, Girard S, Gooijer F, Achten F and Kuyt G 2007 IEEE Trans. Nucl. Sci. 54 1115
[21] Russel G A and Klick C C 1956 Phys. Rev. 101 1473
[22] Girard S, Ouerdane Y, Origlio G, Marcandella C, Boukenter A, Richard N and Boscaino R 2008 IEEE Trans. Nucl. Sci. 55 3473
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[7] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[10] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[11] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[12] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[13] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[14] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[15] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
No Suggested Reading articles found!