CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model |
Hao Xiang(向浩)1, Rui Wang(王锐)1, Feng-Lin Deng(邓凤麟)2,3, and Shao-Feng Wang(王少峰)1,† |
1 Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing 401331, China; 2 CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 3 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract The core structure, Peierls stress and core energy, etc. are comprehensively investigated for the $90^\circ$ dislocation and the $60^\circ$ dislocation in metal aluminum using the fully discrete Peierls model, and in particular thermal effects are included for temperature range $0\leq T \leq 900$ K. For the $90^\circ$ dislocation, the core clearly dissociates into two partial dislocations with the separating distance $D\sim 12$ Å, and the Peierls stress is very small $\sigma_{\rm p}<1$ kPa. The nearly vanishing Peierls stress results from the large characteristic width and a small step length of the $90^\circ$ dislocation. The $60^\circ$ dislocation dissociates into $30^\circ$ and $90^\circ$ partial dislocations with the separating distance $D\sim 11$ Å. The Peierls stress of the $60^\circ$ dislocation grows up from $1$ MPa to $2$ MPa as the temperature increases from $0$ K to $900$ K. Temperature influence on the core structures is weak for both the $90^\circ$ dislocation and the $60^\circ$ dislocation. The core structures theoretically predicted at $T=0$ K are also confirmed by the first principle simulations.
|
Received: 06 January 2022
Revised: 14 February 2022
Accepted manuscript online: 25 February 2022
|
PACS:
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
61.72.Lk
|
(Linear defects: dislocations, disclinations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874093 and 11974062). |
Corresponding Authors:
Shao-Feng Wang
E-mail: sfwang@cqu.edu.cn
|
Cite this article:
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰) Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model 2022 Chin. Phys. B 31 086104
|
[1] Hirth J P and Lothe J 1982 Theory of dislocations, 2nd edn. (New York:Wiley) [2] Cai W, Bulatov V V, Chang J, Li J and Yip S 2004 Dislocations in Solids vol. 12 pp. 1-80 [3] Billinge S J L and Levin I 2007 Science 316 561 [4] Barnard J S, Sharp J, Tong J R and Midgley P A 2006 Science 313 319 [5] Wang Z, Saito M, McKenna K P and Ikuhara Y 2014 Nat. Commun. 5 3239 [6] Chen C, Wang Z, Kato T, Shibata N, Taniguchi T and Ikuhara Y 2015 Nat. Commun. 6 6327 [7] Woodward C, Trinkle D R, Hector L G and Olmsted D L 2008 Phys. Rev. Lett. 100 045507 [8] Fang Q F and Wang R 2000 Phys. Rev. B 62 9317 [9] Szajewski B A, Hunter A, Luscher D J and Beyerlein I J 2017 Modelling Simul. Mater. Sci. Eng. 26 015010 [10] Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L and Wang Z 2016 Mater. Sci. Eng. A 658 1 [11] Fu T, Peng X, Wan C, Lin Z, Chen X, Hu N and Wang Z 2017 Appl. Surf. Sci. 392 942 [12] Peierls R 1940 Proc. Phys. Soc. 52 34 [13] Nabarro F 1947 Proc. Phys. Soc. 59 256 [14] Christian J W and Vitek V 1970 Rep. Prog. Phys. 33 307 [15] Wu X Z, Wang R, Wang S F and Wei Q Y 2010 Appl. Surf. Sci. 256 6345 [16] Lejćcek L 1976 Czech. J. Phys. 26 294 [17] Wang S F 2015 Philos. Mag. 95 3768 [18] Lejćcek L and Kroupa F 1976 Czech. J. Phys. B 26 528 [19] Ngan A H W 1997 J. Mech. Phys. Solids 45 903 [20] Wang S and Hu X 2018 J. Mech. Phys. Solids 114 75 [21] van der Merwe J H 1963 J. Appl. Phys. 34 117 [22] Dundurs J 1968 J. Appl. Phys. 39 4152 [23] Zhang S J and Wang S F 2020 Chin. Phys. B 29 056102 [24] Joós B, Ren Q and Duesbery M S 1994 Phys. Rev. B 50 5890 [25] Schoeck G 2005 Mater. Sci. Eng. A 400-401 7 [26] Xiang Y, Wei H, Ming P and E W 2008 Acta Mater. 56 1447 [27] Wang R, Wang S F and Wu X Z 2011 Phys. Scr. 83 045604 [28] Wang R, Wang S F, Wu X Z and Wei Q Y 2010 Phys. Scr. 81 065601 [29] Jiang Y Z, Wang R and Wang S F 2016 Philos. Mag. 96 2829 [30] Bulatov V V and Kaxiras E 1997 Phys. Rev. Lett. 78 4221 [31] Wang S F 2002 Phys. Rev. B 65 094111 [32] Wang S F 2008 J. Phys. A:Math. Theor. 41 015005 [33] Wang S F, Zhang S J, Bai J H and Yao Y 2015 J. Appl. Phys. 118 244903 [34] Wang S F, Huang L L and Wang R 2016 Acta Mater. 109 187 [35] Huang L L, Wang R and Wang S F 2018 Philos. Mag. 99 347 [36] Xiang H, Wang R and Wang S F 2020 J. Appl. Phys. 127 125106 [37] Wang Z, Saito M, McKenna K P and Ikuhara Y 2014 Nat. Commun. 5 3239 [38] Shen C and Wang Y 2004 Acta Mater. 52 683 [39] Parameswaran V R, Urabe N and Weertmant J 1972 J. Appl. Phys. 43 2982 [40] Olmsted D L, HectorJr L G, Curtin W A and Clifton R J 2005 Model. Simul. Mater. Sci. Eng. 13 371 [41] Srinivasan S G, Liao X Z, Baskes M I, McCabe R J, Zhao Y H and Zhu Y T 2005 Phys. Rev. Lett. 94 125502 [42] Wang R, Wang S F and Wu X Z 2011 Phys. Scr. 83 045604 [43] Mianroodi J, Hunter A, Beyerlein I and Svendsen B 2016 J. Mech. Phys. Solids 95 719 [44] Lu G, Kioussis N, Bulatov V V and Kaxiras E 2001 Mater. Sci. Eng. A 309-310 142 [45] Schoeck G 2003 Mater. Sci. Eng. A 356 93 [46] Mryasov O, Gornostyrev Y and Freeman A 1998 Phys. Rev. B 58 11927 [47] Schoeck G 2012 Mater. Sci. Eng. A 558 162 [48] Zhou X W and Foster M E 2021 Phys. Chem. Chem. Phys. 23 3290 [49] Wang S F 2009 J. Phys. A:Math. Theor. 42 025208 [50] Xu S, Mianroodi J, Hunter A, Beyerlein I and Svendsen B 2019 Philos. Mag. 99 1 [51] Kuksin A, Stegalov V and Yanilkin A 2008 Dokl. Phys. 53 287 [52] Joós B and Duesbery M S 1997 Phys. Rev. Lett. 78 266 [53] Wang S F, Li S R and Wang R 2011 Eur. Phys. J. B 83 15 [54] Kosugi T and Kino T 1989 J. Phys. Soc. Jpn. 58 4269 [55] Bulatov V V, Richmond O and Glazov M V 1999 Acta Mater. 47 3507 [56] Hu X and Wang S F 2017 Philos. Mag. 98 484 [57] Huang L L and Wang S F 2019 J. Appl. Phys. 125 145702 [58] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 [59] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [60] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|