Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086104    DOI: 10.1088/1674-1056/ac587f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model

Hao Xiang(向浩)1, Rui Wang(王锐)1, Feng-Lin Deng(邓凤麟)2,3, and Shao-Feng Wang(王少峰)1,†
1 Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing 401331, China;
2 CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3 Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  The core structure, Peierls stress and core energy, etc. are comprehensively investigated for the $90^\circ$ dislocation and the $60^\circ$ dislocation in metal aluminum using the fully discrete Peierls model, and in particular thermal effects are included for temperature range $0\leq T \leq 900$ K. For the $90^\circ$ dislocation, the core clearly dissociates into two partial dislocations with the separating distance $D\sim 12$ Å, and the Peierls stress is very small $\sigma_{\rm p}<1$ kPa. The nearly vanishing Peierls stress results from the large characteristic width and a small step length of the $90^\circ$ dislocation. The $60^\circ$ dislocation dissociates into $30^\circ$ and $90^\circ$ partial dislocations with the separating distance $D\sim 11$ Å. The Peierls stress of the $60^\circ$ dislocation grows up from $1$ MPa to $2$ MPa as the temperature increases from $0$ K to $900$ K. Temperature influence on the core structures is weak for both the $90^\circ$ dislocation and the $60^\circ$ dislocation. The core structures theoretically predicted at $T=0$ K are also confirmed by the first principle simulations.
Keywords:  dislocation      temperature effect      aluminum  
Received:  06 January 2022      Revised:  14 February 2022      Accepted manuscript online:  25 February 2022
PACS:  61.72.Bb (Theories and models of crystal defects)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874093 and 11974062).
Corresponding Authors:  Shao-Feng Wang     E-mail:  sfwang@cqu.edu.cn

Cite this article: 

Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰) Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model 2022 Chin. Phys. B 31 086104

[1] Hirth J P and Lothe J 1982 Theory of dislocations, 2nd edn. (New York:Wiley)
[2] Cai W, Bulatov V V, Chang J, Li J and Yip S 2004 Dislocations in Solids vol. 12 pp. 1-80
[3] Billinge S J L and Levin I 2007 Science 316 561
[4] Barnard J S, Sharp J, Tong J R and Midgley P A 2006 Science 313 319
[5] Wang Z, Saito M, McKenna K P and Ikuhara Y 2014 Nat. Commun. 5 3239
[6] Chen C, Wang Z, Kato T, Shibata N, Taniguchi T and Ikuhara Y 2015 Nat. Commun. 6 6327
[7] Woodward C, Trinkle D R, Hector L G and Olmsted D L 2008 Phys. Rev. Lett. 100 045507
[8] Fang Q F and Wang R 2000 Phys. Rev. B 62 9317
[9] Szajewski B A, Hunter A, Luscher D J and Beyerlein I J 2017 Modelling Simul. Mater. Sci. Eng. 26 015010
[10] Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L and Wang Z 2016 Mater. Sci. Eng. A 658 1
[11] Fu T, Peng X, Wan C, Lin Z, Chen X, Hu N and Wang Z 2017 Appl. Surf. Sci. 392 942
[12] Peierls R 1940 Proc. Phys. Soc. 52 34
[13] Nabarro F 1947 Proc. Phys. Soc. 59 256
[14] Christian J W and Vitek V 1970 Rep. Prog. Phys. 33 307
[15] Wu X Z, Wang R, Wang S F and Wei Q Y 2010 Appl. Surf. Sci. 256 6345
[16] Lejćcek L 1976 Czech. J. Phys. 26 294
[17] Wang S F 2015 Philos. Mag. 95 3768
[18] Lejćcek L and Kroupa F 1976 Czech. J. Phys. B 26 528
[19] Ngan A H W 1997 J. Mech. Phys. Solids 45 903
[20] Wang S and Hu X 2018 J. Mech. Phys. Solids 114 75
[21] van der Merwe J H 1963 J. Appl. Phys. 34 117
[22] Dundurs J 1968 J. Appl. Phys. 39 4152
[23] Zhang S J and Wang S F 2020 Chin. Phys. B 29 056102
[24] Joós B, Ren Q and Duesbery M S 1994 Phys. Rev. B 50 5890
[25] Schoeck G 2005 Mater. Sci. Eng. A 400-401 7
[26] Xiang Y, Wei H, Ming P and E W 2008 Acta Mater. 56 1447
[27] Wang R, Wang S F and Wu X Z 2011 Phys. Scr. 83 045604
[28] Wang R, Wang S F, Wu X Z and Wei Q Y 2010 Phys. Scr. 81 065601
[29] Jiang Y Z, Wang R and Wang S F 2016 Philos. Mag. 96 2829
[30] Bulatov V V and Kaxiras E 1997 Phys. Rev. Lett. 78 4221
[31] Wang S F 2002 Phys. Rev. B 65 094111
[32] Wang S F 2008 J. Phys. A:Math. Theor. 41 015005
[33] Wang S F, Zhang S J, Bai J H and Yao Y 2015 J. Appl. Phys. 118 244903
[34] Wang S F, Huang L L and Wang R 2016 Acta Mater. 109 187
[35] Huang L L, Wang R and Wang S F 2018 Philos. Mag. 99 347
[36] Xiang H, Wang R and Wang S F 2020 J. Appl. Phys. 127 125106
[37] Wang Z, Saito M, McKenna K P and Ikuhara Y 2014 Nat. Commun. 5 3239
[38] Shen C and Wang Y 2004 Acta Mater. 52 683
[39] Parameswaran V R, Urabe N and Weertmant J 1972 J. Appl. Phys. 43 2982
[40] Olmsted D L, HectorJr L G, Curtin W A and Clifton R J 2005 Model. Simul. Mater. Sci. Eng. 13 371
[41] Srinivasan S G, Liao X Z, Baskes M I, McCabe R J, Zhao Y H and Zhu Y T 2005 Phys. Rev. Lett. 94 125502
[42] Wang R, Wang S F and Wu X Z 2011 Phys. Scr. 83 045604
[43] Mianroodi J, Hunter A, Beyerlein I and Svendsen B 2016 J. Mech. Phys. Solids 95 719
[44] Lu G, Kioussis N, Bulatov V V and Kaxiras E 2001 Mater. Sci. Eng. A 309-310 142
[45] Schoeck G 2003 Mater. Sci. Eng. A 356 93
[46] Mryasov O, Gornostyrev Y and Freeman A 1998 Phys. Rev. B 58 11927
[47] Schoeck G 2012 Mater. Sci. Eng. A 558 162
[48] Zhou X W and Foster M E 2021 Phys. Chem. Chem. Phys. 23 3290
[49] Wang S F 2009 J. Phys. A:Math. Theor. 42 025208
[50] Xu S, Mianroodi J, Hunter A, Beyerlein I and Svendsen B 2019 Philos. Mag. 99 1
[51] Kuksin A, Stegalov V and Yanilkin A 2008 Dokl. Phys. 53 287
[52] Joós B and Duesbery M S 1997 Phys. Rev. Lett. 78 266
[53] Wang S F, Li S R and Wang R 2011 Eur. Phys. J. B 83 15
[54] Kosugi T and Kino T 1989 J. Phys. Soc. Jpn. 58 4269
[55] Bulatov V V, Richmond O and Glazov M V 1999 Acta Mater. 47 3507
[56] Hu X and Wang S F 2017 Philos. Mag. 98 484
[57] Huang L L and Wang S F 2019 J. Appl. Phys. 125 145702
[58] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[59] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[60] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[5] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[6] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[7] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[8] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
[9] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[10] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[11] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[12] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[13] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[14] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[15] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
No Suggested Reading articles found!