Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064401    DOI: 10.1088/1674-1056/ac523c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Accurate prediction of the critical heat flux for pool boiling on the heater substrate

Fengxun Hai(海丰勋)1, Wei Zhu(祝薇)2,3,†, Xiaoyi Yang(杨晓奕)1, and Yuan Deng(邓元)2,4,‡
1 School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
2 Research Institute for Frontier Science, Beihang University, Beijing 100083, China;
3 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China;
4 Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China
Abstract  While the influence of liquid qualities, surface morphology, and operating circumstances on critical heat flux (CHF) in pool boiling has been extensively studied, the effect of the heater substrate has not. Based on the force balance analysis, a theoretical model has been developed to accurately predict the CHF in pool boiling on a heater substrate. An analytical expression for the CHF of a heater substrate is obtained in terms of the surface thermophysical property. It is indicated that the ratio of thermal conductivity (k) to the product of density (ρ) and specific heat (cp) is an essential substrate property that influences the CHF. By modifying the well-known force-balance-based CHF model (Kandlikar model), the thermal characteristics of the substrate are taken into consideration. The bias of predicted CHF values are within 5% compared with the experimental results.
Keywords:  boiling heat transfer      kandlikar model      critical heat flux      heater substrate  
Received:  25 November 2021      Revised:  25 January 2022      Accepted manuscript online:  07 February 2022
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.35.+c (Heat flow in multiphase systems)  
  44.25.+f (Natural convection)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702100), the National Natural Science Foundation of China (Grant No. U21A2079), the Zhejiang Provincial Key Research and Development Program of China (Grant Nos. 2021C05002 and 2021C01026), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Wei Zhu, Yuan Deng     E-mail:  zhu_wei@buaa.edu.cn;dengyuan@buaa.edu.cn

Cite this article: 

Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元) Accurate prediction of the critical heat flux for pool boiling on the heater substrate 2022 Chin. Phys. B 31 064401

[1] Pop E 2010 Nano Res. 3 147
[2] Forrest E, Williamson E, Buongiorno J, Hu L, Rubner M and Cohen R 2010 Int. J. Heat Mass Transfer 53 58
[3] Zhang W, Chai Y, Xu J, Liu G and Sun Y 2018 Appl. Surf. Sci. 457 891
[4] Yu X, Xu J, Liu G and Ji X 2021 Int. J. Heat Mass Transfer 164 120460
[5] Ji X, Xu J, Zhao Z and Yang W 2013 Exp. Therm. Fluid Sci. 48 198
[6] Quan X, Dong L and Cheng P 2014 Int. J. Heat Mass Transfer 76 452
[7] Rahman M M, Ölçeroǧlu E and McCarthy M 2014 Langmuir 30 11225
[8] Chu K, Enright R and Wang E N 2012 Appl. Phys. Lett. 100 241603
[9] Rohsenow W M and Griffith P 1956 Chem. Eng. Prog. Symp. Ser. 18 47
[10] Zuber N 1958 Trans. ASME 80 711
[11] Haramura Y and Katto Y 1983 Int. J. Heat Mass Transfer 26 389
[12] Yagov V V 2014 Int. J. Heat Mass Transfer 73 265
[13] Theofanous T G, Dinh T N, Tu J P and Dinh A T 2002 Exp. Therm. Fluid Sci. 26 793
[14] Mudawar I, Howard A H and Gersey C O 1997 Int. J. Heat Mass Transfer 40 2327
[15] Zuber N 1959 Atomic Energy Commission Report
[16] Kandlikar S G 2001 Journal of Heat Transfer 123 1071
[17] Golobič I and Bergles A E 1997 Exp. Therm. Fluid Sci. 15 43
[18] Lee S K, Liu M, Brown N R, Terrani K A and Lee Y 2020 Nucl. Technol. 206 339
[19] Mei Y, Shao Y, Gong S, Zhu Y and Gu H 2018 Int. J. Heat Mass Transfer 121 632
[20] Jun S, Kim J, You S M and Kim H Y 2016 Int. J. Heat Mass Transfer 103 277
[21] Rainey K N and You S M 2001 Int. J. Heat Mass Transfer 44 2589
[22] Kim J S, Girard A, Jun S, Lee J and You S M 2018 Int. J. Heat Mass Transfer 118 802
[23] Ferjancic K and Golobic I 2002 Exp. Therm. Fluid 25 565
[24] Arik M and Bar-Cohen A 2003 Int. J. Heat Mass Transfer 46 3755
[25] Tachibana F, Akiyama M and Kawamura H 1967 J. Nucl. Sci. Technol. 4 121
[26] Westwater J W, Hwalek J J and Irving M E 1986 Ind. Eng. Chem. Fundam 25 685
[27] Zhang S Y, Zhang X Z, Jin T, Tang K and Huang Y Z 2011 Cryogenics 4 7
[28] Grigoriev V A, Klimenko V V, Pavlov Y M and Ametistov E V 1978 The influence of some heating surface properties on the critical heat flux in cryogenic liquids boiling (Begel House Inc.)
[29] Cooke D and Kandlikar S G 2012 Int. J. Heat Mass Transfer 55 1004
[30] Jaikumar A and Kandlikar S G 2015 Int. J. Heat Mass Transfer 88 652
[31] Patil C M, Santhanam K S V and Kandlikar S G 2014 Int. J. Heat Mass Transfer 79 989
[32] Hong S, Jiang S, Hu Y, Dang C and Wang S 2019 Int. J. Heat Mass Transfer 136 235
[33] Kim J S, Girard A, Jun S, Lee J and You S M 2018 Int. J. Heat Mass Transfer 118 802
[34] Singh A, Mikic B B and Rohsenow W M 1976 ASME J. Heat Transfer 98 401
[35] Pioro I L, Rohsenow W and Doerffer S S 2004 Int. J. Heat Mass Transfer 47 5033
[36] Raghupathi P A and Kandlikar S G 2017 Journal of Heat Transfer 139 111502
[37] Lim D Y and Bang I C 2020 Int. J. Heat Mass Transfer 150 119360
[38] M J and W F 1931 Forschung auf dem Gebiete des Ingenieurwesens 2 435
[39] Kutateladze S S and Schneiderman L L 1953 USAEC Report, AECtr 3405 95
[40] Kutateladze S S 1951 Izv. Akad. Nauk SSSR, Otd. Tech. Nauk 4 529
[41] Kutateladze S S 1948 Kotloturbostroenie 3 10
[42] Lee S K, Liu M, Brown N R, Terrani K A, Blandford E D, Ban H, Jensen C B and Lee Y 2019 Int. J. Heat Mass Transfer 132 643
[43] Mei Y, Shao Y, Gong S, Zhu Y and Gu H 2018 Int. J. Heat Mass Transfer 121 632
[44] Magrini U and Nannei E 1975 J. Heat Transfer 97 173
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[5] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[6] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[7] Influence exerted by bone-containing target body on thermoacoustic imaging with current injection
Yan-Hong Li(李艳红), Guo-Qiang Liu(刘国强), Jia-Xiang Song(宋佳祥), Hui Xia(夏慧). Chin. Phys. B, 2019, 28(4): 044302.
[8] Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism
Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇). Chin. Phys. B, 2018, 27(11): 114402.
[9] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[10] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[11] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[12] General theories and features of interfacial thermal transport
Hangbo Zhou(周杭波), Gang Zhang(张刚). Chin. Phys. B, 2018, 27(3): 034401.
[13] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[14] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[15] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
No Suggested Reading articles found!