Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114402    DOI: 10.1088/1674-1056/27/11/114402
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism

Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇)
Department of Fluid Mechanics, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

A three-dimensional thermoregulation mathematical model of temperature fluctuations for the human body is developed based on predecessors' thermal models. The following improvements are necessary in real situations:ellipsoids and elliptical cylinders are used to adequately approximate body geometry, divided into 18 segments and five layers; the core layer consists of the organs; the pulsation of the heart cycle, the pulsatile laminar flow, the peripheral resistance, and the thermal effect of food are considered. The model is calculated by adopting computational fluid dynamics (CFD) technology, and the results of the model match with the experimental data. This paper can give a reasonable explanation for the temperature fluctuations.

Keywords:  thermoregulation      pulsating laminar flow      heat transfer      computational fluid dynamics (CFD)  
Received:  26 June 2018      Revised:  30 September 2018      Accepted manuscript online: 
PACS:  44.90.+c (Other topics in heat transfer)  
  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
  05.70.Ce (Thermodynamic functions and equations of state)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2010CB734101) and the National Natural Science Foundation of China (Grant No. 51705332).

Corresponding Authors:  Hong-Jun Xue     E-mail:  xuehj@nwpu.edu.cn

Cite this article: 

Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇) Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism 2018 Chin. Phys. B 27 114402

[1] Yang S M and Tao W Q 2006 Heat Transfer 4th edn. (Beijing:Higher Education Press) pp. 41-45(in Chinese)
[2] Fiala D, Lomas K J and Stohrer M 1999 J. Appl. Physiol. 87 1957
[3] Fiala D, Lomas K J and Stohrer M 2001 Int. J. Biometeorol. 45 143
[4] Li B Z, Yang Y, Yao R M, Liu H and Li Y Q 2017 Appl. Ergon. 59 387
[5] Pennes H H 1998 J. Appl. Physiol 855
[6] Fu M, Weng W G, Chen W W and Luo N 2016 J. Therm. Biol. 62 189
[7] Hensley D W, Mark A E, Abella J R, Netscher G M, Wissler E H and Diller K R 2013 J. Biomech. Eng. 135 021006
[8] Zhang X, Noda S, Himeno R and Liu H 2016 Int. J. Numer. Method. Biomed. Eng. 32 2768
[9] Alberto C, Etienne B, Dimitris P and Perumal N 2015 Biomech. Model. Mechan 15 1
[10] Tang Y L, He Y, Shao H W and Ji C J 2016 Int. J. Heat. Mass. 98 568
[11] Gagge A P 1971 Ashrae Trans. 92 709
[12] Wissler E H 1961 J. Appl. Physiol. 16 734
[13] Stolwijk J A J 1971 A Math. Model Physiological Temp. Regulation Man (Washington:Natl. Aeronaut. Space Administration) pp. 1-10
[14] Havenith G and Fiala D 2015 Compr. Physiol. 6 255
[15] Gefen A and Epstein Y 2016 MechanoBiol. Mechanophysiology Military-Relat. Injuries, 1st edn. (Berlin:Springer) pp. 1-38
[16] Shitzer A, Arens E and Zhang H 2016 Int. J. Biometeorol. 60 1051
[17] Ferreira M S and Yanagihara J I 2009 Int. Commun. Heat Mass. 36 718
[18] Zhu D N and Wang T H 2014 Physiology 8th edn. (Beijing:People's Medical Publishing House) pp. 219-237(in Chinese)
[19] Takada S, Kobayashi H and Matsushita 2009 Build. Environ. 44 463
[20] Wan X F and Fan J T 2008 J. Term. Biol. 33 87
[21] kobayashi Y and Tanabe S I 2013 Build. Environ. 66 1
[22] Tanabe S I, Kobayashi K, Nakano J, Ozeki Y and Konishi M 2002 Energ. Build. 34 637
[23] Lai D and Chen Q 2016 Energ. Buildings 118 114
[24] Liu D W 2013 Clinical Hemodynamics, 1st edn. (Beijing:People's Medical Publishing House) pp. 133-141(in Chinese)
[25] Al-Othmani M, Ghaddar N and Ghali K 2008 Int. J. Heat. Mass 51 5522
[26] Segers P, Dubois F, Dewachter D and Verdonck P 1998 Z. Angew. Math. Phys. 3 48
[27] Stergiopulos N, Young D F and Rogge T R 1992 J. Biomech. 25 1477
[28] Montgomery L D 1974 Ann. Biomed. Eng. 2 19
[29] Zhao S, Liu Y and Yao J 1984 Act. Chim. Sin. 6 87
[30] Fohr J P 2015 Heat Moisture Transfer Between Human Body Environment, 1st edn. (London:ISTE) pp. 45-72
[31] Li B, Yang Y, Yao R, Liu H and Li Y 2017 Appl. Ergon. 59 387
[32] Secor S M 2009 J. Com. Physiol. B 179 156
[33] Mccue M D 2006 Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144 381
[34] Fiala D 1998 Dynamic Simulation of Human Heat Transfer and Thermal Comfort, (Ph. D. Dissertation) (Leicester:De Montfort University)
[35] Olufsen M S and Nadim A 2017 Math. Biosci. Eng. 1 1780
[36] Hales S 1964 Cournand A. Staticalessays:Containing Haemastaticks 1st edn. (New York:Hafner) pp. 20-27
[37] Qiu L and Cen R J 2004 J. Med. Biomech. 19 74
[38] Chang W, Gao P and Chao X U 2011 Int. Commun. Heat. Mass. 32 890
[39] Lin Z P and Deng S M 2008 Build. Environ. 43 905
[40] Wang Z 2003 Heat and Moisture Transfer and Clothing Thermal Comfort (Ph. D. Dissertation) (Hongkong:Hong Kong Polytechnic University)
[41] Huang J H and Zhang H 2011 Human Therm. Environment, 1st edn. (Beijing:Science Press) pp. 64-82(in Chinese)
[42] Yang J, Weng W and Zhang B 2014 J. Therm. Biol. 45 54
[43] Munir A, Takada S and Matsushita T 2009 Build. Environ. 44 1777
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[4] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[5] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[6] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[7] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[8] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[9] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[10] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[11] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[12] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[13] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[14] Heat transfer enhancement in MOSFET mounted on different FR4 substrates by thermal transient measurement
Norazlina M S, Dheepan Chakravarthii M K, Shanmugan S, Mutharasu D, Shahrom Mahmud. Chin. Phys. B, 2017, 26(9): 098901.
[15] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
No Suggested Reading articles found!