Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064402    DOI: 10.1088/1674-1056/ac46bd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field

Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子)
School of Mathematics and Sciences, University of Science and Technology, Beijing 100083, China
Abstract  We study the coupled flow and heat transfer of power-law nanofluids on a non-isothermal rough rotating disk subjected to a magnetic field. The problem is formulated in terms of specified curvilinear orthogonal coordinate system. An improved BVP4C algorithm is proposed, and numerical solutions are obtained. The influence of volume fraction, types and shapes of nanoparticles, magnetic field and power-law index on the flow, and heat transfer behavior are discussed. The obtained results show that the power-law exponents (PLE), nanoparticle volume fraction (NVF), and magnetic field inclination angle (MFIA) have almost no effects on velocities in the wave surface direction, but have small or significant effects on the azimuth direction. The NVF has remarkable influences on local Nusselt number (LNN) and friction coefficients (FC) in the radial direction and the azimuth direction (AD). The LNN increases with NVF increasing while FC in AD decreases. The types of nanoparticles, magnetic field strength, and inclination have small effects on LNN, but they have remarkable influences on the friction coefficients with positively correlated heat transfer rate, while the inclination is negatively correlated with heat transfer rate. The size of the nanoparticle shape factor is positively correlated with LNN.
Keywords:  power-law nanofluids      magnetic field      improved BVP4C algorithm      rough rotating disk  
Received:  01 November 2021      Revised:  26 December 2021      Accepted manuscript online:  29 December 2021
PACS:  47.50.-d (Non-Newtonian fluid flows)  
  02.60.Cb (Numerical simulation; solution of equations)  
  68.35.Ct (Interface structure and roughness)  
  07.55.Db (Generation of magnetic fields; magnets)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 11772046).
Corresponding Authors:  Lian-Cun Zheng     E-mail:  liancunzheng@ustb.edu.cn

Cite this article: 

Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子) Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field 2022 Chin. Phys. B 31 064402

[1] Mochizuki S and Yang W J 1981 J. Heat Transfer 103 212
[2] Mehmood A, Usman M and Weigand B 2019 Int. J. Heat Mass Transfer 129 96
[3] Bödewadt U T 1940 J. Appl. Math. Mech. 20 241
[4] Batchelor G K 1951 Q. J. Mech. Appl. Math. 4 29
[5] Stewartson K 1953 Math. Proc. Cambridge Philos. Soc. 49 333
[6] Alzahrani F and Ijaz Khan M 2021 Alexandria Eng. J. 61 3679
[7] Raju S S K, Babu M J and Raju C S K 2021 Chin. J. Phys. 72 499
[8] Kármán Th V 1921 J. Appl. Math. Mech. 1 233
[9] Cochran W G and Goldstein S 1934 Math. Proc. Cambridge Philos. Soc. 30 365
[10] Hayat T, Muhammad T, Shehzad S A and Alsaedi A 2017 Comput. Methods Appl. Mech. Eng. 315 467
[11] Zhang L M, Jiao B B, Yun S C, Kong Y M, Ku C W and Chen D P 2017 Chin. Phys. Lett. 34 025101
[12] Jin Q X, Liu B, Liu Y, Wang W W, Wang H, Xu Z, Gao D, Wang Q, Xia Y Y, Song Z T and Feng S L 2016 Chin. Phys. Lett. 33 098502
[13] Hu R, Hu J Y, Wu R K, Xie B, Yu X J and Luo X B 2016 Chin. Phys. Lett. 33 044401
[14] Wang C, Wang L Q and Ren J 2021 Chin. Phys. Lett. 38 010501
[15] Georges Le P 1989 Int. Commun. Heat Mass Transfer 16 107
[16] Le Palec G, Nardin P and Rondot D 1990 Int. J. Heat Mass Transfer 33 1183
[17] Yoon M S, Hyun J M and Park J S 2007 Int. J. Heat Fluid Flow 28 262
[18] Dorfman L A and Serazetdinov A Z 1965 Int. J. Heat Mass Transfer 8 317
[19] Shevchuk I V 2005 Int. J. Therm. Sci. 44 374
[20] Usman M, Mehmood A and Weigand B 2020 Int. Commun. Heat Mass Transfer 110 104395
[21] Lu Y W, Hu W B, Liu W L and Bai F M 2020 Chin. Phys. B 29 067504
[22] Qu X R, Xu Y Y, Lü S C and Hu J M 2020 Chin. Phys. B 29 046103
[23] Hayat T and Nadeem S 2016 Chin. Phys. B 25 114701
[24] Li Z D, Hu Y C, He P B and Sun L L 2018 Chin. Phys. B 27 77505
[25] Attia H A and Aboul-Hassan A L 2004 Appl. Math. Model 28 1007
[26] Andersson H I, Korte E D and Meland R 2001 Fluid Dyn. Res. 28 75
[27] Khoddamrezaee F, Motallebzadeh R and Vahid D J 2010 J. Appl. Sci. 10 500
[28] Hayat T, Rashid M, Khan M I and Alsaedi A 2018 Results Phys. 9 1618
[29] Li H L and Cao B Y 2019 Acta Phys. Sin. 68 200201 (in Chinese)
[30] Wang Q L, Chen Y Y, Aiyiti A, Zheng M R, Li N B and Xu X F 2020 Chin. Phys. B 29 084402
[31] Xi Q, Zhong J X, He J X, Xu X F, Nakayama T, Wang Y Y, Liu J, Zhou J and Li B W 2020 Chin. Phys. Lett. 37 104401
[32] Wang Y, Yu X X, Wan X, Yang N and Deng C C 2021 Chin. Phys. Lett. 38 094401
[33] Yang J C, Li F C, Cai W H, Zhang H N and Yu B 2015 Chin. Phys. B 24 084401
[34] Zhen W K, Lin Z Z and Huang C L 2017 Chin. Phys. B 26 114401
[35] Zhao J F, Luo Z Y, Ni M J and Cen K F 2009 Chin. Phys. Lett. 26 066202
[36] Chen H, Li X T, Chen J Y and Shen M 2016 Chin. Phys. Lett. 33 104401
[37] Rehman A and Nadeem S 2012 Chin. Phys. Lett. 29 124701
[38] Mehmood A and Iqbal M S 2016 J. Mol. Liq. 224 1326
[39] Alqarni A A, Alveroǧlu B, Griffiths P T and Garrett S J 2019 J. Non-Newtonian Fluid Mech. 273 104174
[40] Ming C Y, Zheng L C and Zhang X X 2011 Int. Commun. Heat Mass Transfer 38 280
[41] Usman, Abuzar G, Irfan M, Taseer M and Yasir A 2021 Case Stud. Therm. Eng. 28 101370
[42] Usman, Lin P and Ghaffari A 2021 J. Therm. Anal. Calorim. 146 1735
[43] Lin Y H, Zheng L C and Chen G 2015 Powder Technol. 274 324
[44] Brinkman H C 1952 J. Chem. Phys. 20 571
[45] Ghasemi B and Aminossadati S M 2009 Numer. Heat Transfer A-Appl. 55 807
[46] Hamilton R L and Crosser O K 1962 Ind. Eng. Chem. Fundam 1 187
[47] Sheikholeslami M and Shehzad S A 2018 Int. J. Heat Mass Transfer 118 182
[48] Lin Y H, Zheng L C and Zhang X X 2014 Int. J. Heat Mass Transfer 77 708
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[7] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[8] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[11] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[12] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[13] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[14] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[15] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
No Suggested Reading articles found!