Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060307    DOI: 10.1088/1674-1056/ac65f0
GENERAL Prev   Next  

Efficient quantum private comparison protocol utilizing single photons and rotational encryption

Tian-Yi Kou(寇天翊)1, Bi-Chen Che(车碧琛)1, Zhao Dou(窦钊)1,†, Xiu-Bo Chen(陈秀波)1, Yu-Ping Lai(赖裕平)2, and Jian Li(李剑)2
1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  As a branch of quantum secure multiparty computation, quantum private comparison is applied frequently in many fields, such as secret elections, private voting, and identification. A quantum private comparison protocol with higher efficiency and easier implementation is proposed in this paper. The private secrets are encoded as single polarized photons and then encrypted with a homomorphic rotational encryption method. Relying on this method and the circular transmission mode, we implement the multiplexing of photons, raising the efficiency of our protocol to 100%. Our protocol is easy to realize since only single photons, unitary operation, and single-particle measurement are introduced. Meanwhile, the analysis shows that our protocol is also correct and secure.
Keywords:  quantum private comparison      rotational encryption      polarized single photons      efficiency  
Received:  07 February 2022      Revised:  07 April 2022      Accepted manuscript online:  11 April 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1805405), the 111 Project (Grant No. B21049), the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant No. 2019BDKFJJ014), and the Fundamental Research Funds for the Central Universities (Grant No. 2020RC38).
Corresponding Authors:  Zhao Dou     E-mail:  dou@bupt.edu.cn

Cite this article: 

Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑) Efficient quantum private comparison protocol utilizing single photons and rotational encryption 2022 Chin. Phys. B 31 060307

[1] Yao A C 1982 Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, November 3-5, 1982, Chicago, USA, p. 160
[2] Jakobsson M and Yung M 1996 Annual International Cryptology Conference, August 18-22, 1996, Santa Barbara, USA, p. 186
[3] Boudot F, Schoenmakers B and Traore J 2001 Discrete Appl. Math. 111 23
[4] Lo H K 1997 Phys. Rev. A 56 1154
[5] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[6] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[7] Chang Y, Zhang S B, Yan L L and Han G H 2015 Chin. Phys. B 24 050307
[8] Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
[9] Wang C and Zhang Y 2009 Chin. Phys. B 18 3238
[10] Zhu Z C, Zhang Y Q and Fu A M 2011 Chin. Phys. B 20 040306
[11] Zhang Z R, Liu W T and Li C Z 2011 Chin. Phys. B 20 050309
[12] Du Y T and Bao W S 2018 Chin. Phys. B 27 080304
[13] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[14] Liu C Q, Zhu C H, Wang L H, Zhang L X and Pei C X 2016 Chin. Phys. Lett. 33 100301
[15] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303
[16] He Y Q, Mao Y, Zhong H, Huang D and Guo Y 2020 Chin. Phys. B 29 050309
[17] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303
[18] Yang Y G and Wen Q Y 2009 J. Phys. A: Math. Theor. 42 055305
[19] Chen X B, Xu G, Niu X X, Wen Q Y and Yang Y X 2010 Opt. Commun. 283 1561
[20] Tseng H Y, Lin J and Hwang T 2012 Quantum Inf. Process. 11 373
[21] Jia H Y, Wen Q Y, Li Y B and Gao F 2012 Int. J. Theor. Phys. 51 1187
[22] Chen X B, Dou Z, Xu G, Wang C and Yang Y X 2014 Quantum Inf. Process. 13 85
[23] Shi R H, Mu Y, Zhong H, Cui J and Zhang S 2016 Sci. Rep. 6 19655
[24] Peng Z W, Shi R H, Zhong H, Cui J and Zhang S 2017 Quantum Inf. Process. 16 316
[25] Xu Q D, Chen H Y, Gong L H and Zhou N R 2020 Int. J. Theor. Phys. 59 1798
[26] Chou W H, Hwang T and Gu J 2016 arXiv: 1607.07961 [cs.CR]
[27] Zhou N R, Xu Q D, Du N S and Gong L H 2021 Quantum Inf. Process. 20 124
[28] Wang B, Liu S Q and Gong L H 2022 Chin. Phys. B 31 010302
[29] Shannon K, Towe E and Tonguz O K 2020 arXiv: 2003.07907 [cs.CR]
[30] Wen Q Y, Qin S J and Gao F 2014 J. Cryptol. 1 200 (in Chinese)
[31] Yang Y G, Xia J, Jia X, Shi L and Zhang H 2012 Int. J. Quantum Inf. 10 1250065
[32] Liu B, Gao F, Jia H Y, Huang W, Zhang W W and Wen Q Y 2013 Quantum Inf. Process. 12 887
[33] Li Y B, Ma Y J, Xu S W, Huang W and Zhang Y S 2014 Int. J. Theor. Phys. 53 3191
[34] Liu B, Xiao D, Huang W, Jia H Y and Song T T 2017 Quantum Inf. Process. 16 180
[35] Goswami P S, Chakraborty T and Chattopadhyay A 2021 International Conference on Electrical, Computer and Communication Technologies, September 15-17, 2021, Erode, The Republic of India, p. 1
[36] Xin X J, Ding L, Li C Y, Sang Y X, Yang Q L and Li F G 2022 Quantum Inf. Process. 21 33
[37] Zhang J L, Huang Z J, Li X, Wu M Q, Wang X Y and Dong Y M 2021 Int. J. Theor. Phys. 60 2930
[38] Song X L, Wen A J and Gou R 2019 IEEE Access 7 142507
[39] Wu W Q, Zhou G L, Zhao Y X and Zhang H G 2020 Int. J. Theor. Phys. 59 1866
[40] Ye T Y and Ji Z X 2017 Int. J. Theor. Phys. 56 1517
[41] Ye T Y 2017 Commun. Theor. Phys. 67 147
[42] Zha X W, Yu X Y, Cao Y and Wang S K 2018 Int. J. Theor. Phys. 57 3874
[43] Pan H M 2017 Int. J. Theor. Phys. 56 3340
[44] Ji Z X, Fan P R, Zhang H G and Wang H Z 2020 Opt. Commun. 459 124911
[45] Ye C Q, Li J, Chen X B and Tian Y 2021 Quantum Inf. Process. 20 262
[46] Jones R C 1941 J. Opt. Soc. Am. 31 488
[47] Zi W, Guo F Z, Luo Y, Cao S H and Wen Q Y 2013 Int. J. Theor. Phys. 52 3212
[48] Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Quantum Inf. Comput. 7 329
[49] Yan L L, Zhang S B, Chang Y, Sheng Z W and Sun Y H 2019 Int. J. Theor. Phys. 58 3852
[50] Sun Z W, Yu J P, Wang P, Xu L L and Wu C H 2015 Quantum Inf. Process. 14 2125
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[4] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[5] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[6] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[7] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[8] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[9] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[13] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[14] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[15] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
No Suggested Reading articles found!