Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060306    DOI: 10.1088/1674-1056/ac490a
GENERAL Prev   Next  

Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels

Qingquan Peng(彭清泉)1, Qin Liao(廖骎)2,†, Hai Zhong(钟海)1, Junkai Hu(胡峻凯)1, and Ying Guo(郭迎)1,3,‡
1 School of Automation, Central South University, Changsha 410083, China;
2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
3 School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The trans-media transmission of quantum pulse is one of means of free-space transmission which can be applied in continuous-variable quantum key distribution (CVQKD) system. In traditional implementations for atmospheric channels, the 1500-to-1600-nm pulse is regarded as an ideal quantum pulse carrier. However, the underwater transmission of this pulses tends to suffer from severe attenuation, which inevitably deteriorates the security of the whole CVQKD system. In this paper, we propose an alternative scheme for implementations of CVQKD over satellite-to-submarine channels. We estimate the parameters of the trans-media channels, involving atmosphere, sea surface and seawater and find that the short-wave infrared performs well in the above channels. The 450-nm pulse is used for generations of quantum signal carriers to accomplish quantum communications through atmosphere, sea surface and seawater channels. Numerical simulations show that the proposed scheme can achieve the transmission distance of 600 km. In addition, we demonstrate that non-Gaussian operations can further lengthen its maximal transmission distance, which contributes to the establishment of practical global quantum networks.
Keywords:  continuous-variable quantum key distribution (CVQKD)      short-wave infrared      satellite-to-submarine  
Received:  18 November 2021      Revised:  31 December 2021      Accepted manuscript online:  07 January 2022
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62101180 and 61871407), the Key R&D Program of Hunan Province (Grant No. 2022GK2016), the State Key Laboratory of High Performance Computing, National University of Defense Technology (Grant No. 202101-25), and the Fundamental Research Funds for the Central Universities (Grant No. 531118010371).
Corresponding Authors:  Qin Liao, Ying Guo     E-mail:;

Cite this article: 

Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎) Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels 2022 Chin. Phys. B 31 060306

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Liao Q, Liu H, Gong Y, Wang Z, Peng Q and Guo Y 2022 Opt. Express 30 3876
[3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[4] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[5] Zuo Z, Wang Y, Liao Q and Guo Y 2021 Phys. Rev. A 104 022615
[6] Xie C L, Guo Y, Wang Y J, Huang D and Zhang L 2018 Chin. Phys. Lett. 35 090302
[7] Guo Y, Peng Q, Liao Q and Wang Y 2021 IEEE Photon. J. 13 1
[8] Liao Q, Liu H, Zhu L and Guo Y 2021 Phys. Rev. A 103 032410
[9] Liao Q, Xiao G, Xu C G, Xu Y and Guo Y 2020 Phys. Rev. A 102 032604
[10] Hughes R J, Nordholt J E, Derkacs D and Peterson C G 2002 New J. Phys. 4 43
[11] Buttler W T, Hughes R J, Lamoreaux S K, Morgan G L, Nordholt J E and Peterson C G 2000 Phys. Rev. Lett. 84 5652
[12] Vasylyev D, Semenov A, Vogel W, Günthner K, Thurn A, Bayraktar Ö and Marquardt C 2017 Phys. Rev. A 96 043856
[13] Gruneisen M T, Eickhoff M L, Newey S C et al. 2020 rXiv:2006.07745 [physics.optics]
[14] Heim B, Peuntinger C, Killoran N, Khan I, Wittmann C, Marquardt C and Leuchs G 2014 New J. Phys. 16 113018
[15] Wang S, Huang P, Wang T and Zeng G 2018 New J. Phys. 20 083037
[16] Su Y, Guo Y and Huang D 2019 Entropy 21 908
[17] Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y et al. 2017 Nat. Photon. 11 509
[18] Duan Z, Yuan Y, Lu J, Wang J, Li Y, Svanberg S and Zhao G 2020 Opt. Express 28 2600
[19] Pope R M and Fry E S 1997 Appl. Opt. 36 8710
[20] Gruneisen M T, Flanagan M B, Sickmiller B A, Black J P, Stoltenberg K E and Duchane A W 2015 Opt. Express 23 23924
[21] Gruneisen M T, Sickmiller B A, Flanagan M B, Black J P, Stoltenberg K E and Duchane A W 2016 Opt. Engin. 55 026104
[22] Huang D, Huang P, Lin D, Wang C and Zeng G 2015 Opt. Lett. 40 3695
[23] Qi B, Lougovski P, Pooser R, Grice W and Bobrek M 2015 Phys. Rev. X 5 041009
[24] Liao Q, Xiao G, Zhong H and Guo Y 2020 New J. Phys. 22 083086
[25] Lanning R N, Harris M A, Oesch D W, Oliker M D and Gruneisen M T 2021 arXiv:2104.10276 [quant-ph]
[26] Farrell T C 2019 The effect of atmospheric optical turbulence on laser communications systems: part 1, theory sensors and systems for space applications XII (International Society for Optics and Photonics) vol 11017 p. 110170B
[27] Roggemann M, Welsh B and Hunt B 1996 Imaging Through Turbulence (New York: CRC Press)
[28] Johnson L J, Green R J and Leeson M S 2013 Appl. Opt. 52 7867
[29] Uitz J, Claustre H, Morel A and Hooker S B 2006 J. Geophys. Res.: Oceans 111 C08005
[30] Gariano J and Djordjevic I B 2019 Opt. Express 27 3055
[31] Cox C and Munk W 1954 J. Opt. Soc. Am. 44 838
[32] Ross V, Dion D and Potvin G 2005 J. Opt. Soc. Am. A 22 2442
[33] Guo Y, Xie C, Huang P, Li J, Zhang L, Huang D and Zeng G 2018 Phys. Rev. A 97 052326
[34] Hieronymi M 2016 Opt. Express 24 A1045
[35] Dong R, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G and Andersen U L 2010 Phys. Rev. A 82 012312
[36] Guo Y, Xie C, Liao Q, Zhao W, Zeng G and Huang D 2017 Phys. Rev. A 96 022320
[37] Liao Q, Guo Y, Huang D, Huang P and Zeng G 2018 New J. Phys. 20 023015
[38] Hu L, Al-amri M, Liao Z and Zubairy M 2020 Phys. Rev. A 102 012608
[39] Guo Y, Ye W, Zhong H and Liao Q 2019 Phys. Rev. A 99 032327
[40] Zhang Y, Melko R G and Kim E A 2018 Phys. Rev. B 97 079904
[41] Zuo Z, Wang Y, Mao Y, Ye W, Hu L, Huang D and Guo Y 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185501
[42] Fan H Y 1990 J. Phys. A: Math. Gen. 23 1833
[1] Short-wave infrared InGaAs photodetectors and focal plane arrays
Yong-Gang Zhang(张永刚), Yi Gu(顾溢), Xiu-Mei Shao(邵秀梅), Xue Li(李雪), Hai-Mei Gong(龚海梅), Jia-Xiong Fang(方家熊). Chin. Phys. B, 2018, 27(12): 128102.
No Suggested Reading articles found!