Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064701    DOI: 10.1088/1674-1056/ac5603
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Hemodynamics of aneurysm intervention with different stents

Peichan Wu(吴锫婵)1,†, Yuhan Yan(严妤函)2,†, Huan Zhu(朱欢)3, Juan Shi(施娟)1,‡, and Zhenqian Chen(陈振乾)1
1 School of Energy and Environment, Southeast University, Nanjing 210096, China;
2 Department of Geriatrics, General Hospital of Eastern Theater Command, Nanjing 210002, China;
3 Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, China
Abstract  An ideal cerebral aneurysm model with different stent forms is established. By using the single-relaxation-time (SRT) lattice Boltzmann method (LBM) to solve the flow field, the blood flow characteristics in the aneurysm under different conditions are studied numerically. The intra-arterial stenting of saccular aneurysms at different Reynolds numbers and the feasibility of new stenting forms such as double stenting and variable-spacing stenting in the aneurysms are explored. The hemodynamic factors such as velocity distribution and wall shear stress (WSS) in the aneurysm are analyzed. Numerical results show that the risk of aneurysm rupture is mainly centralized at the right corner of the aneurysm. Intervention of stents in the aneurysm can effectively reduce the intra-aneurysmal velocity and WSS, and decrease the danger of aneurysm rupture during strenuous exercise or emotional excitement. At the same time, the intervention of a double stent and the stent shape with a dense anterior part in the aneurysm has certain advantages in preventing aneurysm rupture. The intra-aneurysmal mean velocity reduction can reach 90.39% and 80.29% after the intervention of the double stent and the anterior densified stent respectively.
Keywords:  aneurysm      hemodynamics      stent      lattice Boltzmann method  
Received:  01 November 2021      Revised:  31 January 2022      Accepted manuscript online:  17 February 2022
PACS:  47.63.-b (Biological fluid dynamics)  
  47.15.-x (Laminar flows)  
  47.60.Dx (Flows in ducts and channels)  
  47.11.-j (Computational methods in fluid dynamics)  
Fund: Project supported by Management Project of General Hospital of Eastern Theater Command (Grant No. YYBJ2021043).
Corresponding Authors:  Juan Shi     E-mail:  Shi_juan@seu.edu.cn

Cite this article: 

Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾) Hemodynamics of aneurysm intervention with different stents 2022 Chin. Phys. B 31 064701

[1] Li Y P 2015 Lattice Boltzmann numerical study on hemodynamics of tandem intracranial aneurysms, MS Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[2] Zhai X J, Amira A, Bensaali F, Al-Shibani A, Al-Nassr A, El-Sayed A, Eslami M, Dakua S P and Abinahed J 2019 Phys. Rev. E 31 e5184
[3] Detmer F J, Chung B J, Jimenez C, Hamzei-Sichani F, Kallmes D, Putman C and Cebral J R 2019 Neuroradiology 61 275
[4] Xiang J P, Natarajan S K, Tremmel M, Ma D, Mocco J, Hopkins L N, Siddiqui A H, Levy E I and Meng H 2011 Stroke 42 144
[5] Longo M, Granata F, Racchiusa S, Mormina E, Grasso G, Longo G M, Garufi G, Salpietro F M and Alafaci C 2017 World Neurosurg. 105 632
[6] Sun Q, Growth A and Aach T 2012 Med. Phys. 39 742
[7] Usmani A Y and Patel S 2018 Int. J. Energy Clean Env. 19 119
[8] Meng H, Tutino V M, Xiang J and Siddiqui A 2014 Am. J. Neuroradiol 35 1254
[9] Longo M, Granata F, Racchiusa S, Mormina E, Grasso G, Longo G M, Garufi G, Salpietro F M and Alafaci C 2017 World Neurosurg. 105 632
[10] Paisal M S A, Taib I and Ismai A E 2017 IOP Conference Series: Materials Science and Engineering 165 012003
[11] Yadollahi-Farsani H, Scougal E, Herrmann M, Wei W, Frakes D and Chong B 2019 Comput. Methods Biomech. Biomed. Eng. 22 961
[12] Molyneux A J, Kerr R S, Birks J, Ramzi N, Yarnold J, Sneade M and Rischmiller J 2009 Lancet Neurol. 8 427
[13] Zhang P, Sun A Q, Zhan F, Luan J Y and Deng X Y 2014 J. Biomech. 47 3524
[14] Suri H, Ionita C N, Baier R E and Rudin S 2011 IEEE Engineering in Medicine and Biology Society Conference Proceedings, August 30-September 3, 2011, Boston, USA, p. 1105
[15] Chen C, Xiong Y, Jiang W T, Wang Y B, Wang Z Z and Chen Y 2020 Cardiovasc. Eng. Technol. 11 36
[16] Li Y J, Verrelli D I, Yang W, Qian Y and Chong W 2020 J. Biomech. 100 109590
[17] He Y L, Wang Y and Li Q 2008 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp. 1-9 (in Chinese)
[18] Guo Z Y and Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp. 1-15 (in Chinese)
[19] Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G and Viggen E M 2017 The Lattice Boltzmann Method (Berlin: Springer) pp. 54-56
[20] Wen B H, Liu H Y, Zhang C Y and Wang Q 2009 Chin. Phys. B 18 4353
[21] Yi H H, Yang X F, Wang C F and Li H B 2009 Chin. Phys. B 18 2878
[22] Yun B M, Dasi L P, Aidun C K and Yoganathan A P 2014 J. Fluid Mech. 754 122
[23] Wang Y, Navarro L, Zhang Y, Kao E, Zhu Y M and Courbebaisse G 2017 Comput. Sci. Eng. 19 56
[24] Kang X Y, Ji Y P, Liu D H and Jin Y J 2008 Chin. Phys. B 17 1041
[25] Osaki S, Hayashi K, Kimura H, Seta T, Kohmura E and Tomiyama A 2019 Comput. Math. Appl. 78 2746
[26] Afrouzi H H, Ahmadian M, Hosseini M, Arasteh H, Toghraie D and Rostami S 2020 Comput. Method Programs Biomed. 187 105312
[27] Czaja B, Závodszky G, Tarksalooyeh V A and Hoekstra A G 2018 J. R. Soc. Interface 15 20180485
[28] Li S, Latt J and Chopard B 2018 Comput. Fluids 172 651
[29] Li S, Chopard B and Latt J 2019 J. Comput. Sci. 38 101045
[30] Li S, Latt J and Chopard B 2018 Int. J. Numer. Method Biomed. 34 e2949
[31] Zhang Y, Wang Y, Kao E, Florez-Valencia L and Courbebaisse G 2019 J. Biomech. 82 20
[32] Guo Z L, Shi B C and Wang N C 2000 J. Comput. Phys. 165 288
[33] Matyka M, Koza Z and Mirosław L 2013 Comput. Fluids 73 115
[34] Hirabayashi M, Ohta M, Rüfenacht D A and Chopard B 2004 Futur. Gener. Comp. Syst. 20 925
[35] Zou Q S and He X Y 1997 Phys. Fluids 9 1591
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[6] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[7] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[8] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[9] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[12] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[13] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[14] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[15] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
No Suggested Reading articles found!