ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse |
Yue Qiao(乔月)1,2, Jun Wang(王俊)1,†, Yan Yan(闫妍)1, Simeng Song(宋思蒙)1, Zhou Chen(陈洲)1, Aihua Liu(刘爱华)1, Jigen Chen(陈基根)2, Fuming Guo(郭福明)1,‡, and Yujun Yang(杨玉军)1,§ |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 Department of Physics and Materials Engineering, Taizhou University, Taizhou 318000, China |
|
|
Abstract High-order harmonic generation (HHG) from an atom illuminated by a sinusoidally phase-modulated pulse is investigated by solving the time-dependent Schrödinger equation. The spectral shift that occurs in atomic HHG can be achieved easily using our laser pulse. It is shown that the photon energy of the generated harmonics is controllable within the range of 1 eV. The shift of the frequency peak position is rooted in the asymmetry of the rising and falling parts of the laser pulse. We also show that by varying the phase parameters in the frequency domain of the laser one can adjust and control the shift in atomic harmonic spectra.
|
Received: 13 July 2021
Revised: 09 September 2021
Accepted manuscript online: 06 October 2021
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
98.62.Py
|
(Distances, redshifts, radial velocities; spatial distribution of galaxies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604119, 11627807, 11774129, 11774131, 11904120, 11975012, and 91850114) and the Outstanding Youth Project of Taizhou University (Grant No. 2019JQ002). |
Corresponding Authors:
Jun Wang, Fuming Guo, Yujun Yang
E-mail: wangjun86@jlu.edu.cn;guofm@jlu.edu.cn;yangyj@jlu.edu.cn
|
Cite this article:
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军) Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse 2022 Chin. Phys. B 31 064214
|
[1] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y and Wang B B 2020 Chin. Phys. Lett. 37 113201 [2] Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Lou S Z, Liu A H, He L H, Ma P, Zhang D D and Ding D J 2021 Chin. Phys. Lett. 38 053202 [3] Yang W F, Li J, Jia W B, Zhang H D, Liu X W, Zhu M, Song X H and Chen J 2021 Phys. Rev. A 103 053105 [4] Yang W F, Song X H, Gong S Q, Cheng Y and Xu Z Z 2007 Phy. Rev. Lett. 99 133602 [5] Liu X W, Zhang G J, Li J, Shi G L, Zhou M Y, Song X H and Yang W F 2020 Phy. Rev. Lett. 124 113202 [6] Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J and Yang W F 2018 Phy. Rev. Lett. 121 103201 [7] Corkum P B 1993 Phy. Rev. Lett. 71 1994 [8] Lewenstein M, Balcou Ph, Ivanov M Yu, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [9] Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express 27 34392 [10] Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Phys. Rev. A 101 033413 [11] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874 [12] Jin C, Wang S J, Zhao X, Zhao S F, Wang S J and Lin C D 2020 Phys. Rev. A 101 013429 [13] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H and Yang W F 2021 Chin. Phys. Lett. 38 063201 [14] Wang X W, Wang L, Xiao F, Zhang D W, Lu J M, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 [15] Zhao X, Wang S J, Yu W W, Wei H, Wei C L, Wang B C, Chen J G and Lin C D 2020 Phys. Rev. Appl. 13 034043 [16] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407 [17] Zhao X, Wang S J, Wang B C and Lin C D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 154002 [18] Lee D G, Kim H T, Hong K H, Nam C H, Choi I W, Bartnik A and Fiedorowicz H 2002 Appl. Phys. Lett. 81 3726 [19] Bellini M, Lyngå C, Tozzi A, Gaarde M B, Hänsch T W, L'Huillier A and Wahlström C G 1998 Phy. Rev. Lett. 81 297 [20] Burnett N H, Baldis H A, Richardson M C and Enright G D 1977 Appl. Phys. Lett. 31 172 [21] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 [22] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [23] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G 1998 Science 282 919 [24] Bartels R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M and Kapteyn H C 2000 Nature 406 164 [25] Weinacht T C, Ahn J and Bucksbaum P H 1999 Nature 397 233 [26] Zhao X Y, Wang C C, Hu S L, Li W D, Chen J and Hao X L 2019 Chin. Phys. B 28 83202 [27] Chang Z, Rundquist A, Wang H, Christov I, Kapteyn H C and Murnane M M 1998 Phys. Rev. A 58 R30 [28] Lee D G, Kim J H, Hong K H and Nam C H 2001 Phy. Rev. Lett. 87 243902 [29] Sekikawa T, Ohno T, Yamazaki T, Nabekawa Y and Watanabe S 1999 Phy. Rev. Lett. 83 2564 [30] de Bohan A, Antoine P, MiloŠević D B and Piraux B 1998 Phy. Rev. Lett. 81 1837 [31] Sansone G, Vozzi C, Stagira S, Pascolini M, Poletto L, Villoresi P, Tondello G, de Silvestri S and Nisoli M 2004 Phy. Rev. Lett. 92 113904 [32] Zhao X, Chen J, Fu P, Liu X, Yan Z C and Wang B 2013 Phys. Rev. A 87 043411 [33] Corkum P B, Burnett N H and Ivanov M Y 1994 Opt. Lett. 19 1870 [34] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614 [35] Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A 83 023401 [36] Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E and Chang Z 2008 Phy. Rev. Lett. 100 103906 [37] Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M and Yang Y J 2015 Phys. Rev. A 92 033848 [38] Han J X, Wang J, Qiao Y, Liu A H, Guo F M and Yang Y J 2019 Opt. Express 27 8768 [39] Ciappina M F, Biegert J, Quidant R and Lewenstein M 2012 Phys. Rev. A 85 033828 [40] Guo Y, Liu A H, Wang J and Liu X S 2019 Chin. Phys. B 28 094212 [41] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2012 Nature 482 68 [42] Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y, Attwood D and Jacobsen C 2002 Science 297 376 [43] Solak H H 2006 J. Phys. D: Appl. Phys. 39 R171 [44] Gulyás Oldal L, Csizmadia T, Ye P, Harshitha N G, ZaÏr A, Kahaly S, Varjú K, Füle M and Major B 2020 Phys. Rev. A 102 013504 [45] Watson J B, Sanpera A and Burnett K 1995 Phys. Rev. A 51 1458 [46] Schafer K J and Kulander K C 1997 Phy. Rev. Lett. 78 638 [47] Geissler M, Tempea G and Brabec T. 2000 Phys. Rev. A 62 033817 [48] Bian X B and Bandrauk A D. 2014 Phy. Rev. Lett. 113 193901 [49] Du H, Xue S, Wang H, Zhang Z and Hu B 2015 Phys. Rev. A 91 063844 [50] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409 [51] Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X and Sun J Z 2007 Chin. Phys. Lett. 24 1537 [52] Wang J, Chen G, Guo F M, Li S Y, Chen J G and Yang Y J 2013 Chin. Phys. B 22 033203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|