Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064204    DOI: 10.1088/1674-1056/ac3ba9
RAPID COMMUNICATION Prev   Next  

Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber

Pei Zhang(张沛)1,2,3, Kaharudin Dimyati3,4, Bilal Nizamani3, Mustafa M. Najm3, and S. W. Harun3,5,†
1 School of Electrical and Information Engineering, Huaihua University, Huaihua 418008, China;
2 Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province, Huaihua University, Huaihua 418008, China;
3 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
4 Faculty of Advanced Technology and Multidiscipline, Airlangga University, Surabaya 60115, Indonesia;
5 Institute of Computer Science and Digital Innovation, UCSI University, Kuala Lumpur, Malaysia
Abstract  Self-starting Q-switching, Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time. The central wavelengths of Q-switching, Q-switched mode-locking and mode-locking operation modes are 1569.7 nm, 1570.9 nm, and 1572 nm, respectively. The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB. The results validate the capability of generating soliton pulse by doped fiber saturable absorber. Furthermore, the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.
Keywords:  all-fiber laser      Q-switched mode-locking      dark soliton      fiber saturable absorber  
Received:  18 September 2021      Revised:  03 November 2021      Accepted manuscript online:  20 November 2021
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  42.55.Wd (Fiber lasers)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.70.-a (Optical materials)  
Fund: This work was supported by the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC5012).
Corresponding Authors:  S. W. Harun     E-mail:  wadi72@yahoo.com

Cite this article: 

Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber 2022 Chin. Phys. B 31 064204

[1] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N and Der Au J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
[2] Lau K Y, Ker P J, Abas A F, Alresheedi M T and Mahdi M A 2019 Chin. Opt. Lett. 17 051401
[3] Fu B, Hua Y, Xiao X, Zhu H, Sun Z and Yang C 2014 IEEE J. Sel. Top. Quantum Electron. 20 411
[4] Miao R, Tong M, Yin K, Ouyang H, Wang Z, Zheng X and Jiang T 2019 Chin. Opt. Lett. 17 071403
[5] Wei Q, Niu K, Han X, Zhang H, Zhang C, Yang C and Man B 2019 Opt. Mater. Express 9 3535
[6] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C, Wu T C, Wu Q, Zheng Z and Hasan T 2018 Opt. Express 26 12506
[7] Mak K F and Shan J 2016 Nat. Photonics 10 216
[8] Kadir N, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phy. Lett. 34 014202
[9] Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C and Zhang H 2015 Opt. Express 23 20030
[10] Chen C, Yu Y S, Yang R, Wang L, Guo J C, Chen Q D and Sun H B 2011 J. Lightwave Technol. 29 2126
[11] Tordella L, Djellout H, Dussardier B, Saïssy A and Monnom G 2003 Electron. Lett. 39 1307
[12] Tsai T Y, Fang Y C, Lee Z C and Tsao H X 2009 Opt. Lett. 34 2891
[13] Lu Y and Gu X 2013 Opt. Express 21 1997
[14] Lu Y and Gu X 2014 IEEE Photonics J. 6 1
[15] Tiu Z C, Zarei A, Tan S J, Ahmad H and Harun S W 2014 Chin. Phy. Lett. 31 124203
[16] Gene J, Kim S K and Do Lim S 2018 J. Lightwave Technol. 36 2183
[17] Zhang P, Dimyati K, Najm M M, Nizamani B, Paul M C, Das S, Dhar A, Pal M, Yasin M and Harun S W 2021 Microwave Opt. Technol. Lett. 63 2214
[18] Tao M, Wu J, Peng J, Wu Y, Yang P and Ye X 2013 Laser Phys. 23 085102
[19] Latiff A A, Kadir N A, Ismail E I, Shamsuddin H, Ahmad H and Harun S W 2017 Opt. Commun. 389 29
[20] Tao M, Ye X, Wang Z, Yan Y, Feng G, Yang P and Feng G 2014 Laser Phys. 24 085110
[21] Liu Z, Jia W, Wang H, Wang Y, Menke N and Zhang J P 2015 Chin. Phys. B 24 084210
[22] Zhang H, Tang D, Zhao L and Wu X 2009 Phys. Rev. A 80 045803
[23] Kivshar Y S and Turitsyn S K 1993 Opt. Lett. 18 337
[24] Milian C, Skryabin D and Ferrando A 2009 Opt. Lett. 34 2096
[25] Kivshar Y S 1993 IEEE J. Quantum Electron. 29 250
[26] Zhao W and Bourkoff E 1992 J. Opt. Soc. Am. B: Opt. Phys. 9 1134
[27] Zhang H, Tang D, Zhao L and Knize R 2010 Opt. Express 18 4428
[28] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[1] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[2] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[3] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[4] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[5] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[6] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[7] Generating periodic interference in Bose-Einstein condensates
Shen-Tong Ji(冀慎统), Yuan-Sheng Wang(王元生), Yue-E Luo(罗月娥), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(9): 090303.
[8] High-energy pulse generation using Yb-doped Q-switched fiber laser based on single-walled carbon nanotubes
Wang Jun-Li (王军利), Wang Xue-Ling (汪雪玲), He Bo-Rong (贺博荣), Zhu Jiang-Feng (朱江峰), Wei Zhi-Yi (魏志义), Wang Yong-Gang (王勇刚). Chin. Phys. B, 2015, 24(9): 097601.
[9] Evolution of dark solitons in the presence of Ramangain and self-steepening effect
Yu Yu (于宇), Jia Wei-Guo (贾维国), Yan Qing (闫青), Menke Neimule (门克内木乐), Zhang Jun-Ping (张俊萍). Chin. Phys. B, 2015, 24(8): 084210.
[10] Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire
Li Qiu-Yan (李秋艳), Zhao Fei (赵飞), He Peng-Bin (贺鹏斌), Li Zai-Dong (李再东). Chin. Phys. B, 2015, 24(3): 037508.
[11] Spatial weak-light ring soliton in self-assembled quantum dots
Chen Qiu-Cheng (陈秋成). Chin. Phys. B, 2014, 23(12): 124212.
[12] Bound states of spatial optical dark solitons in nonlocal media
Ou-Yang Shi-Gen(欧阳世根), Hu Wei(胡巍), and Guo Qi(郭旗) . Chin. Phys. B, 2012, 21(4): 040505.
[13] Dark soliton in one-dimensional Bose–Einstein condensate under a periodic perturbation of trap
Liu Chao-Fei(刘超飞),Hu Ke(胡柯),Hu Tao(胡涛),and Tang Yi(唐翌) . Chin. Phys. B, 2011, 20(1): 010309.
[14] Bright and dark soliton solutions in growing Bose—Einstein condensates
Song Wei-Wei(宋伟为), Li Qiu-Yan(李秋艳), Li Zai-Dong(李再东), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2010, 19(7): 070503.
[15] Control of soliton characteristics of the condensate by an arbitrary x-dependent external potential
Yang Ru-Shu(杨如曙), Yao Chun-Mei(姚春梅), and Chen Ri-Xin(陈日新). Chin. Phys. B, 2009, 18(9): 3736-3741.
No Suggested Reading articles found!