Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037508    DOI: 10.1088/1674-1056/24/3/037508

Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire

Li Qiu-Yan (李秋艳)a, Zhao Fei (赵飞)b, He Peng-Bin (贺鹏斌)c, Li Zai-Dong (李再东)a
a Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
b Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
c College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, China

Magnon density distribution can be affected by the spin-transfer torque in a perpendicular ferromagnetic anisotropy nanowire. We obtain the analytical expression for the critical current condition. For the cases of below and above the critical value, the magnon density distribution admits bright and dark soliton states, respectively. Moreover, we discuss two-soliton collision properties that are modulated by the current. Each magnetic soliton exhibits no changes in both velocity and width before and after the collision.

Keywords:  magnon density distribution      bright soliton      dark soliton  
Received:  12 July 2014      Revised:  27 October 2014      Accepted manuscript online: 
PACS:  75.78.-n (Magnetization dynamics)  
  75.40.Gb (Dynamic properties?)  
  72.25.Ba (Spin polarized transport in metals)  

Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2012202022 and A2012202023), the Aid Program for Young Teacher of Hunan University, China, the Project-sponsored by SRF for ROCS, SEM, China, and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province, China.

Corresponding Authors:  Li Zai-Dong     E-mail:

Cite this article: 

Li Qiu-Yan (李秋艳), Zhao Fei (赵飞), He Peng-Bin (贺鹏斌), Li Zai-Dong (李再东) Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire 2015 Chin. Phys. B 24 037508

[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[2] Berger L 1996 Phys. Rev. B 54 9353
[3] Bazaliy Y B, Jones B A and Zhang S C 1998 Phys. Rev. B 57 R3213
[4] Katine J A, Albert F J, Buhrman B A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149
[5] Pizzini S, V. Uhliż, Vogel J, Rougemaille N, Laribi S, Cros V, Jiménez E, Camarero J, Tieg C, Bonet E, Bonfim M, Mattana R, Deranlot C, Petroff F, Ulysse C, Faini G and Fert A 2009 Appl. Phys. Expr. 2 023003
[6] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[7] Kosevich A M, Ivanoy B A and Kovalev A S 1990 Phys. Rep. 194 117
[8] Bloch F 1932 Z. Phys. 74 295
[9] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[10] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[11] Jiang X, Thomas L, Moriya R, Hayashi M, Bergman B, Rettner C and Parkin S S P 2010 Nat. Commun. 1 25
[12] Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203
[13] Tsoi M, Fontana R E and Parkin S S P 2003 Appl. Phys. Lett. 83 2617
[14] Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601
[15] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203
[16] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[17] Tretiakov O A, Liu Y and Abanov A 2012 Phys. Rev. Lett. 108 247201
[18] Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502
[19] Fan Z, Ma X P, Lee S H, Shim J H, Piao H G and Kim D H 2012 Acta Phys. Sin. 61 107502 (in Chinese)
[20] Tsoi M, Jansen A G M, Bass J, Chiang W C, Tsoi V and Wyder P 2000 Nature 406 46
[21] Tsoi M, Tsoi V, Bass J, Jansen A G M and Wyder P 2002 Phys. Rev. Lett. 89 246803
[22] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[23] Li Z D, Liang J Q, Li L and Liu W M 2004 Phys. Rev. E 69 066611
[24] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[25] Kavitha L, Saravanan M and Gopic D 2013 Chin. Phys. B 22 030512
[26] Hayashi M, Thomas L, Rettner C, Moriya R and Parkin S S P 2007 Nat. Phys. 3 21
[27] Thomas L, Moriya R, Rettner C and Parkin S S P 2010 Science 330 1810
[28] Yan P and Wang X R 2010 Appl. Phys. Lett. 96 162506
[29] Lee K J, Redon O and Dieny B 2005 Appl. Phys. Lett. 86 022505
[30] Gusakova D, Houssameddine D, Ebels U, Dieny B, Buda-Prejbeanu L, Cyrille M C and Delaet B 2009 Phys. Rev. B 79 104406
[31] Urazhdin S 2008 Phys. Rev. B 78 060405(R)
[32] Seki T, Tomita H, Shinjo T and Suzuki Y 2010 Appl. Phys. Lett. 97 162508
[33] Houssameddine D, Sierra J F, Gusakova D, Delaet B, Ebels U, Buda-Prejbeanu L, Cyrille M C, Dieny B, Ocker B, Langer J and Maas W 2010 Appl. Phys. Lett. 96 072511
[34] Tudosa I, Katine J A, Mangin S and Fullerton E E 2010 IEEE Trans. Magn. 46 2328
[35] Dalfovo F, Giorgini S, Pitaevskii Lev P and Stringari S 1999 Rev. Mod. Phys. 71 463
[36] Stenger J, Inouye S, Andrews M R, Miesner H J, Stamper-Kurn D M and Ketterle K 1999 Phys. Rev. Lett. 82 2422
[37] Hirota R 1973 J. Math. Phys. 14 805
[1] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[2] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[3] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[4] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[5] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[6] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[7] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[8] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[9] Propagation characteristics of parallel dark solitons in silicon-on-insulator waveguide
Zhen Liu(刘振), Weiguo Jia(贾维国), Yang Wang(汪洋), Hongyu Wang(王红玉), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(1): 014203.
[10] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[11] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[12] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[13] Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate
Tian-Fu Xu(徐天赋), Yu-Feng Zhang(张玉峰), Lei-Chao Xu(许磊超), Zai-Dong Li(李再东). Chin. Phys. B, 2017, 26(10): 100304.
[14] Generating periodic interference in Bose-Einstein condensates
Shen-Tong Ji(冀慎统), Yuan-Sheng Wang(王元生), Yue-E Luo(罗月娥), Xue-Shen Liu(刘学深). Chin. Phys. B, 2016, 25(9): 090303.
[15] Evolution of dark solitons in the presence of Ramangain and self-steepening effect
Yu Yu (于宇), Jia Wei-Guo (贾维国), Yan Qing (闫青), Menke Neimule (门克内木乐), Zhang Jun-Ping (张俊萍). Chin. Phys. B, 2015, 24(8): 084210.
No Suggested Reading articles found!