CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire |
Li Qiu-Yan (李秋艳)a, Zhao Fei (赵飞)b, He Peng-Bin (贺鹏斌)c, Li Zai-Dong (李再东)a |
a Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
b Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
c College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, China |
|
|
Abstract Magnon density distribution can be affected by the spin-transfer torque in a perpendicular ferromagnetic anisotropy nanowire. We obtain the analytical expression for the critical current condition. For the cases of below and above the critical value, the magnon density distribution admits bright and dark soliton states, respectively. Moreover, we discuss two-soliton collision properties that are modulated by the current. Each magnetic soliton exhibits no changes in both velocity and width before and after the collision.
|
Received: 12 July 2014
Revised: 27 October 2014
Accepted manuscript online:
|
PACS:
|
75.78.-n
|
(Magnetization dynamics)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
Fund: Project supported by the Natural Science Foundation of Hebei Province, China (Grant Nos. A2012202022 and A2012202023), the Aid Program for Young Teacher of Hunan University, China, the Project-sponsored by SRF for ROCS, SEM, China, and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province, China. |
Corresponding Authors:
Li Zai-Dong
E-mail: lizd2018@live.com
|
Cite this article:
Li Qiu-Yan (李秋艳), Zhao Fei (赵飞), He Peng-Bin (贺鹏斌), Li Zai-Dong (李再东) Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire 2015 Chin. Phys. B 24 037508
|
[1] |
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
|
[2] |
Berger L 1996 Phys. Rev. B 54 9353
|
[3] |
Bazaliy Y B, Jones B A and Zhang S C 1998 Phys. Rev. B 57 R3213
|
[4] |
Katine J A, Albert F J, Buhrman B A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149
|
[5] |
Pizzini S, V. Uhliż, Vogel J, Rougemaille N, Laribi S, Cros V, Jiménez E, Camarero J, Tieg C, Bonet E, Bonfim M, Mattana R, Deranlot C, Petroff F, Ulysse C, Faini G and Fert A 2009 Appl. Phys. Expr. 2 023003
|
[6] |
Gilbert T L 2004 IEEE Trans. Magn. 40 3443
|
[7] |
Kosevich A M, Ivanoy B A and Kovalev A S 1990 Phys. Rep. 194 117
|
[8] |
Bloch F 1932 Z. Phys. 74 295
|
[9] |
Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
|
[10] |
Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
|
[11] |
Jiang X, Thomas L, Moriya R, Hayashi M, Bergman B, Rettner C and Parkin S S P 2010 Nat. Commun. 1 25
|
[12] |
Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203
|
[13] |
Tsoi M, Fontana R E and Parkin S S P 2003 Appl. Phys. Lett. 83 2617
|
[14] |
Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601
|
[15] |
Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203
|
[16] |
Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
|
[17] |
Tretiakov O A, Liu Y and Abanov A 2012 Phys. Rev. Lett. 108 247201
|
[18] |
Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502
|
[19] |
Fan Z, Ma X P, Lee S H, Shim J H, Piao H G and Kim D H 2012 Acta Phys. Sin. 61 107502 (in Chinese)
|
[20] |
Tsoi M, Jansen A G M, Bass J, Chiang W C, Tsoi V and Wyder P 2000 Nature 406 46
|
[21] |
Tsoi M, Tsoi V, Bass J, Jansen A G M and Wyder P 2002 Phys. Rev. Lett. 89 246803
|
[22] |
He P B and Liu W M 2005 Phys. Rev. B 72 064410
|
[23] |
Li Z D, Liang J Q, Li L and Liu W M 2004 Phys. Rev. E 69 066611
|
[24] |
Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
|
[25] |
Kavitha L, Saravanan M and Gopic D 2013 Chin. Phys. B 22 030512
|
[26] |
Hayashi M, Thomas L, Rettner C, Moriya R and Parkin S S P 2007 Nat. Phys. 3 21
|
[27] |
Thomas L, Moriya R, Rettner C and Parkin S S P 2010 Science 330 1810
|
[28] |
Yan P and Wang X R 2010 Appl. Phys. Lett. 96 162506
|
[29] |
Lee K J, Redon O and Dieny B 2005 Appl. Phys. Lett. 86 022505
|
[30] |
Gusakova D, Houssameddine D, Ebels U, Dieny B, Buda-Prejbeanu L, Cyrille M C and Delaet B 2009 Phys. Rev. B 79 104406
|
[31] |
Urazhdin S 2008 Phys. Rev. B 78 060405(R)
|
[32] |
Seki T, Tomita H, Shinjo T and Suzuki Y 2010 Appl. Phys. Lett. 97 162508
|
[33] |
Houssameddine D, Sierra J F, Gusakova D, Delaet B, Ebels U, Buda-Prejbeanu L, Cyrille M C, Dieny B, Ocker B, Langer J and Maas W 2010 Appl. Phys. Lett. 96 072511
|
[34] |
Tudosa I, Katine J A, Mangin S and Fullerton E E 2010 IEEE Trans. Magn. 46 2328
|
[35] |
Dalfovo F, Giorgini S, Pitaevskii Lev P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[36] |
Stenger J, Inouye S, Andrews M R, Miesner H J, Stamper-Kurn D M and Ketterle K 1999 Phys. Rev. Lett. 82 2422
|
[37] |
Hirota R 1973 J. Math. Phys. 14 805
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|