CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions |
Ling-Mei Zhang(张令梅)†, Yuan-Yuan Miao(苗圆圆)†, Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超)‡ |
Shandong Provincial Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Based on first-principles calculations, the bias-induced evolutions of hybrid interface states in π-conjugated tricene and in insulating octane magnetic molecular junctions are investigated. Obvious bias-induced splitting and energy shift of the spin-resolved hybrid interface states are observed in the two junctions. The recombination of the shifted hybrid interface states from different interfaces makes the spin polarization around the Fermi energy strongly bias-dependent. The transport calculations demonstrate that in the π -conjugated tricene junction, the bias-dependent hybrid interface states work efficiently for large current, current spin polarization, and distinct tunneling magnetoresistance. But in the insulating octane junction, the spin-dependent transport via the hybrid interface states is inhibited, which is only slightly disturbed by the bias. This work reveals the phenomenon of bias-induced reconstruction of hybrid interface states in molecular spinterface devices, and the underlying role of conjugated molecular orbitals in the transport ability of hybrid interface states.
|
Received: 26 September 2021
Revised: 22 November 2021
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11974215,21933002,and 11874242) and the Shandong Provincial Natural Science Foundation,China (Grant No.ZR2019MA043). |
Corresponding Authors:
Gui-Chao Hu,E-mail:hgc@sdnu.edu.cn
E-mail: hgc@sdnu.edu.cn
|
About author: 2021-11-24 |
Cite this article:
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超) Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions 2022 Chin. Phys. B 31 057303
|
[1] Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821 [2] Sun M F, Wang X C and Mi W B 2018 J Phys Chem. C 122 3115 [3] Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2020 Chin. Phys. B 29 017303 [4] Li Y Q, Kan H J, Miao Y Y, Qiu S, Zhang G P, Wang C K and Hu G C 2020 Physica E 124 114327 [5] Miao Y Y, Qiu S, Zhang G P, Wang C K, Ren J F and Hu G C 2021 Physica E 131 114729 [6] Naber W, Faez S and Wiel W 2007 J. Phys. D: Appl. Phys. 40 R205 [7] Yakhmi J V and Bambole V 2012 Solid State Phenomena 189 95 [8] Qi J S, Miao Y Y, Cui Y J, Qiu S, Zhao J M, Zhang G P, Ren J F, Wang C K and Hu G C 2021 Results Phys. 27 104510 [9] Zeng J, Chen K Q and Zhou Y 2020 Chin. Phys. B 29 088503 [10] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B 27 107202 [11] Fert A 2008 Rev. Mod. Phys. 80 1517 [12] Tyagi P and Friebe E 2018 J. Magn. Magn. Mater. 453 186 [13] Sun D L, Yin L F, Sun C J, Guo H W, Gai Z, Zhang X G, Ward T Z, Cheng Z H and Shen J 2010 Phys. Rev. Lett. 104 236602 [14] Sanvito S and Rocha A R 2006 J. Comput. Theor. Nanosci. 3 624 [15] Gruber M, Ibrahim F, Boukari S, Joly L, Costa V D, Studniarek M, Peter M, Isshiki H, Jabbar H, Davesne V, Arabski J, Otero E, Choueikani F, Chen K, Ohresser P, Wulfhekel W, Scheurer F, Beaurepaire E, Alouani M, Weber W and Bowen M 2015 Nano. Lett. 15 7921 [16] Methfessel T, Steil S, Baadji N, Großmann, N, Koffler K, Sanvito S, Aeschlimann M, Cinchetti M and Elmers HJ 2011 Phys. Rev. B 84 224403 [17] Shi S W, Sun Z Y, Bedoya-Pinto A, Graziosi P, Li X, Liu X J, Hueso L, Dediu V A, Luo Y and Fahlman M 2014 Adv. Funct. Mater. 24 4812 [18] Sanvito S 2010 Nat. Phys. 6 562 [19] Cinchetti M, Dediu V A and Hueso L E 2017 Nat. Mater. 16 507 [20] Atodiresei N, Brede J, Lazić P, Caciuc V, Hoffmann G, Wiesendanger R and Blügel S 2010 Phys. Rev. Lett. 105 066601 [21] Djeghloul F, Gruber M, Urbain E, Xenioti D, Joly L, Boukari S, Arabski J, Bulou H, Scheurer F, Bertran F, Févre PL, Taleb-Ibrahimi A, Wulfhekel W, Garreau G, Hajjar-Garreau S, Wetzel P, Alouani M, Beaurepaire E, Bowen M and Weber W 2016 J. Phys. Chem. Lett. 7 2310 [22] Atodiresei N, Caciuc V, Lazié P and Blügel S 2011 Phys. Rev. B 84 172402 [23] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2019 J. Magn. Magn. Mater. 489 165465 [24] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2019 J. Magn. Magn. Mater. 479 247 [25] Gutiérrez R, Fagas G, Richter K, Grossmann F and Schmidt R 2003 Europhys. Lett. 62 90 [26] Van Dyck C, Geskin V and Cornil J 2014 Adv. Funct. Mater. 24 6154 [27] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615 [28] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Phys. Chem. C 124 12144 [29] Okuyama H, Kitaguchi Y, Hattori T, Ueda Y, Ferrer NG, Hatta S and Aruga T 2016 J. Chem. Phys. 144 244703 [30] Xie F, Fan Z Q, Chen K Q, Zhang X J and Long M Q 2017 Org. Electron. 50 198 [31] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys: Condens. Matter. 14 2745 [32] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [34] Troullier N and Martins J L 1990 Solid State Commun. 74 613 [35] Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Oxford University Press) [36] Ferry D and Goodnick S M 1997 Transport in Nanostructures (Cambridge: Cambridge University Press) [37] Yang J F, Zhou L, Han Q and Wang X F 2012 J. Phys. Chem. C 116 19996 [38] Larade B, Taylor J, Zheng Q R, Mehrez H, Pomorski P and Guo H 2001 Phys. Rev. B 64 195402 [39] Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K and Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302 [40] Zhang Z, Qiu S, Miao Y Y, Ren J F, Wang C K and Hu G C 2017 Appl. Surf. Sci. 409 60 [41] Li Y, Zhang G P, Xie Z, Zhang Z, Ren J F, Wang C K and Hu G C 2016 Chin. J. Chem. Phys. 29 344 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|