Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 047301    DOI: 10.1088/1674-1056/28/4/047301
Special Issue: SPECIAL TOPIC — Topological semimetals
SPECIAL TOPIC—Topological semimetals Prev   Next  

Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators

Junwei Liu(刘军伟)1,3, Chen Fang(方辰)2, Liang Fu(傅亮)3
1 Department of Physics, Hong Kong University of Science and Technology(HKUST), Clear Water Bay, Hong Kong, China;
2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract  

Based on k·p analysis and realistic tight-binding calculations, we find that time-reversal-breaking Weyl semimetals can be realized in magnetically-doped (Mn, Eu, Cr, etc.) Sn1-xPbx(Te, Se) class of topological crystalline insulators. All the Weyl points are well separated in momentum space and possess nearly the same energy due to high crystalline symmetry. Moreover, both the Weyl points and Fermi arcs are highly tunable by varying Pb/Sn composition, pressure, magnetization, temperature, surface potential, etc., opening up the possibility of manipulating Weyl points and rewiring the Fermi arcs.

Keywords:  topological crystalline insulator      magnetic Weyl semimetal      magnetically-doped Sn1-xPbx(Te,Se)      Fermi arc  
Received:  04 January 2019      Revised:  20 February 2019      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  75.50.Pp (Magnetic semiconductors)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.43.-f (Quantum Hall effects)  
Fund: 

Project supported by the MRSEC Program of the National Natural Science Foundation of China (Grant No. DMR-1419807) and the Start Up Funding from HKUST and the National Thousand-Yong-Talents Program of China.

Corresponding Authors:  Junwei Liu     E-mail:  liuj@ust.hk

Cite this article: 

Junwei Liu(刘军伟), Chen Fang(方辰), Liang Fu(傅亮) Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators 2019 Chin. Phys. B 28 047301

[1] Weyl H 1929 Zeitschrift für Physik 56 330
[2] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[3] Nielsen H and Ninomiya M 1982 Phys. Lett. B 130 389
[4] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[5] Liu C X, Ye P and Qi X L 2013 Phys. Rev. B 87 235306
[6] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5
[7] Witten E 2015 arXiv preprint arXiv: 1510.07698
[8] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[9] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[10] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Bansil A, et al. 2015 Nat. Commun. 6
[11] Xu S Y, Belopolski I, Alidoust N, Neupane M, Zhang C, Sankar R, Huang S M, Lee C C, Chang G, Wang B, et al. 2015 Science 349 613
[12] Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, et al. 2015 Nat. Phys. 11 748
[13] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, et al. 2015 Phys. Rev. X 5 031013
[14] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, et al. 2015 Nat. Phys. 11 724
[15] Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, et al. 2015 Nat. Phys. 11 728
[16] Lu L, Fu L, Joannopoulos J D and Soljacic M 2013 Nat. Photon. 7
[17] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821
[18] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljačić M 2015 Science 349 622
[19] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[20] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[21] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[22] Fang C, Gilbert M J, Dai X and Bernevig B A 2012 Phys. Rev. Lett. 108 266802
[23] Witczak-Krempa W and Kim Y B 2012 Phys. Rev. B 85 045124
[24] Kim H J, Kim K S, Wang J F, Sasaki M, Satoh N, Ohnishi A, Kitaura M, Yang M and Li L 2013 Phys. Rev. Lett. 111 246603
[25] Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106
[26] Dubček T, Kennedy C J, Lu L, Ketterle W, Soljačić M and Buljan H 2015 Phys. Rev. Lett. 114 225301
[27] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Kim T, Ali M N, Buechner B, Hoesch M and Cava R J 2015 arXiv preprint arXiv: 1507.04847
[28] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Belopolski I, Sanchez D S, Bian G, Alidoust N, Lin H, et al. 2016 arXiv preprint arXiv: 1603.01255
[29] Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129
[30] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, et al. 2018 Nat. Phys. 14 1125
[31] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681
[32] Fu L 2011 Phys. Rev. Lett. 106 106802
[33] Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982
[34] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Bernsten M H, et al. 2012 Nat. Mater. 11 1023
[35] Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Takahashi T, Segawa K and Ando Y 2012 Nat. Phys. 8 800
[36] Xu S Y, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Denlinger J D, Wang Y J, Lin H, Wray L A, et al. 2012 Nat. Commun. 3 1192
[37] Yan C, Liu J, Zang Y, Wang J, Wang Z, Wang P, Zhang Z D, Wang L, Ma X, Ji S, et al. 2014 Phys. Rev. Lett. 112 186801
[38] Zeljkovic I, Okada Y, Serbyn M, Sankar R, Walkup D, Zhou W, Liu J, Chang G, Wang Y J, Hasan M Z, et al. 2015 Nat. Mater. 14 318
[39] Cho G Y 2011 arXiv preprint arXiv: 1110.1939
[40] Story T, Ga?la?zka, Frankel R B and Wolff P A 1986 Phys. Rev. Lett. 56 777
[41] Bauer G 1986 in MRS Proceedings, Vol. 89 (Cambridge: Cambridge University Press) p. 107
[42] Górska M and Anderson J R 1988 Phys. Rev. B 38 9120
[43] Pascher H, Röthlein P, Bauer G and von Ortenberg M 1989 Phys. Rev. B 40 10469
[44] Rothlein P, Pascher H, Bauer G and Tacke M 1990 Semicond. Sci. Technol. 5 S147
[45] Galazka R R, palek J, Lewicki A, Crooker B C, Karczewski G and Story T 1991 Phys. Rev. B 43 11093
[46] Hofmann W, Fichtel U, Pascher H, Frank N and Bauer G 1992 Phys. Rev. B 45 8742
[47] Bauer G, Pascher H and Zawadzki W 1992 Semicond. Sci. Technol. 7 703
[48] Dietl T, Śliwa C, Bauer G and Pascher H 1994 Phys. Rev. B 49 2230
[49] de Jonge W J M, Swagten H J M, Eltink S J E A and Stoffels N M J 1990 Semicond. Sci. Technol. 5 S131
[50] Story T, Grodzicka E, Witkowska B, Gorecka J and Dobrowolski W 1992 Acta Physica Polonica A 82 879
[51] Eggenkamp P, Story T, Swüste C, Swagten H and de Jonge W 1993 Acta Physica Polonica A 84 641
[52] Eggenkamp P, Swagten H, Story T and de Jonge W 1995 J. Magn. Magn. Mater. 140-144 2039
[53] Geist F, Herbst W, Mejía-García C, Pascher H, Rupprecht R, Ueta Y, Springholz G, Bauer G and Tacke M 1997 Phys. Rev. B 56 13042
[54] Mitchell D L and Wallis R F 1966 Phys. Rev. 151 581
[55] Murakami S 2007 New J. Phys. 9 356
[56] Okada Y, Serbyn M, Lin H, Walkup D, Zhou W, Dhital C, Neupane M, Xu S, Wang Y J, Sankar R, et al. 2013 Science 341 1496
[57] Qian X, Fu L and Li J 2014 Nano Res. 8 967
[58] Brodowska B, Dobrowolski W, Arciszewska M, Slynko E and Dugaev V 2006 J. Alloys Compd. 423 205
[59] Fang C, Lu L, Liu J and Fu L 2015 arXiv preprint arXiv: 1512.01552
[60] Lent C S, Bowen M A, Dow J D, Allgaier R S, Sankey O F and Ho E S 1986 Superlattices and Microstructures 2 491
[61] Liu J, Hsieh T H, Wei P, Duan W, Moodera J and Fu L 2014 Nat. Mater. 13 178
[62] Liu J, Qian X and Fu L 2015 Nano Lett. 15 2657
[63] Wojek B M, Buczko R, Safaei S, Dziawa P, Kowalski B J, Berntsen M H, Balasubramanian T, Leandersson M, Szczerbakow A, Kacman P, et al. 2013 Phys. Rev. B 87 115106
[64] Safaei S, Kacman P and Buczko R 2013 Phys. Rev. B 88 045305
[65] Liu J, Duan W and Fu L 2013 Phys. Rev. B 88 241303
[66] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F: Metal Phys. 15 851
[67] Fukuma Y, Asada H, Nishimura N and Koyanagi T 2003 J. Appl. Phys. 93 4034
[68] Dziawa P, Knoff W, Domukhovski V, Domagala J, Jakiela R, Lusakowska E, Osinniy V, Swiatek K, Taliashvili B and Story T 2007 Narrow Gap Semiconductors (Springer) pp. 11-14
[69] Fukuma Y, Asada H, Moritake N, Irisa T and Koyanagi T 2007 Appl. Phys. Lett. 91 092501
[70] Fukuma Y, Asada H, Miyawaki S, Koyanagi T, Senba S, Goto K and Sato H 2008 Appl. Phys. Lett. 93 252502
[71] Dietl T 2010 Nat. Mater. 9 965
[72] Hassan M, Springholz G, Lechner R, Groiss H, Kirchschlager R and Bauer G 2011 J. Crystal Growth 323 363
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[3] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[4] Band gap anomaly and topological properties in lead chalcogenides
Simin Nie(聂思敏), Xiao Yan Xu(许霄琰), Gang Xu(徐刚), Zhong Fang(方忠). Chin. Phys. B, 2016, 25(3): 037311.
[5] Electronic properties of SnTe-class topological crystalline insulator materials
Jianfeng Wang(王建峰), Na Wang(王娜), Huaqing Huang(黄华卿), Wenhui Duan(段文晖). Chin. Phys. B, 2016, 25(11): 117313.
No Suggested Reading articles found!