Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057801    DOI: 10.1088/1674-1056/26/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication of broadband antireflection coatings using broadband optical monitoring mixed with time monitoring

Qi-Peng Lv(吕起鹏)1,2, Song-Wen Deng(邓淞文)1, Shao-Qian Zhang(张绍骞)1, Fa-Quan Gong(公发全)1, Gang Li(李刚)1
1 Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  Multi-layer optical coatings with complex spectrum requirements, such as multi-band pass filters, notch filters, and ultra-broadband antireflection coating, which usually contain very thin layers and sensitive layers, are difficult to be fabricated using a quartz crystal monitoring method or a single wavelength optical monitoring system (SWLOMS). In this paper, a broadband antireflection (AR) coating applied in the wavelength range from 800 nm to 1800 nm was designed and deposited by ion beam sputtering (IBS). Ta2O5 and SiO2 were chosen as high and low refractive index coating materials, respectively. The optimized coating structure contains 9 non-quarter-wave (QW) layers totally with ultra-thin layers and sensitive layers in this coating stack. In order to obtain high transmittance, it is very important to realize the thickness accurate control on these thin layers and sensitive layers. A broadband optical monitoring mixed with time monitoring strategy was successfully used to control the layer thickness during the deposition process. At last, the measured transmittance of AR coating is quite close to the theoretical value. A 0.6% variation in short wavelength edge across the central 180 mm diameter is demonstrated. A spectrum shift of less than 0.5% for 2 continuous runs is also presented.
Keywords:  broadband optical monitoring      time monitoring      ultra-thin and sensitive layer      broadband antireflection coatings  
Received:  08 November 2016      Revised:  29 December 2016      Accepted manuscript online: 
PACS:  42.79.Wc (Optical coatings)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  82.33.Ya (Chemistry of MOCVD and other vapor deposition methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308092 and 61505209).
Corresponding Authors:  Gang Li     E-mail:  lig@dicp.ac.cn

Cite this article: 

Qi-Peng Lv(吕起鹏), Song-Wen Deng(邓淞文), Shao-Qian Zhang(张绍骞), Fa-Quan Gong(公发全), Gang Li(李刚) Fabrication of broadband antireflection coatings using broadband optical monitoring mixed with time monitoring 2017 Chin. Phys. B 26 057801

[1] Kong W J, Shen Z C, Wang S H, Shao J D, Fan Z X and Lu C J 2010 Chin. Phys. B 19 044210
[2] Zhang J C, Fang M, Jin Y X and He H B 2012 Chin. Phys. B 21 199
[3] Badoil B, Lemarchand F, Cathelinaud M and Lequime M 2007 Appl. Optics 46 4294
[4] Lee C C, Wu K, Kuo C C and Chen S H 2005 Opt. Express 13 4854
[5] Lee C C and Chen Y J 2008 Opt. Express 16 6119
[6] Vidal B, Fornier A and Pelletier E 1978 Appl. Optics 17 1038
[7] Li L and Yen Y H 1989 Appl. Optics 28 2889
[8] Tikhonravov A V, Trubetskov M K and Amotchkina T V 2006 Appl. Optics 45 7863
[9] Lai F C, Wu X C, Zhuang B P, Yan Q and Huang Z G 2008 Opt. Express 16 9436
[10] Chen Y R, Sun B, Han T, Kong Y F, Xu C H, Zhou P, Li X F, Wang S Y, Zheng Y X and Chen L Y 2005 Opt. Express 13 10049
[11] Xu C, Yang S, Zhang S H, Niu J N, Qiang Y H, Liu J T and Li D W 2012 Chin. Phys. B 21 114213
[12] Lappschies M, Görtz B and Ristau D 2006 Appl. Optics 45 1502
[13] Xiong F, Yang T, Song Z N and Yang P Z 2013 Chin. Phys. B 22 058104
[14] Sun P, Hu M, Zhang F, Ji Y Q, Song H S, Liu D D and Leng J 2015 Chin. Phys. B 24 067803
[15] Zhang F, Wang Q H, Wang S, Wang J Y, Zhong Z C and Jin Y 2014 Chin. Phys. B 23 098105
[16] Lyngnes O, Brauneck U, Wang J S, Erz R, Kohli S, Rubin B, Kraus J and Deakins D 2015 Proc. SPIE 9627 962715
[1] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[2] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[3] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[4] Experimental demonstration of narrow-band rugate minus filters using rapidly alternating deposition technology
Ying Zhang(章瑛), Yan-Zhi Wang(王胭脂), Jiao-Ling Zhao(赵娇玲), Jian-Da Shao(邵建达), Shuang-Chen Ruan(阮双琛). Chin. Phys. B, 2018, 27(5): 054217.
[5] Effects of annealing time on the structure, morphology and stress of gold-chromium bilayer film
Hong Zhang(张洪), Yun-Xia Jin(晋云霞), Hu Wang(王虎), Fang-Yu Kong(孔钒宇), Hao-Peng Huang(黄昊鹏), Yun Cui(崔云). Chin. Phys. B, 2016, 25(10): 104205.
[6] Analysis of the spatial filter of a dielectric multilayer film reflective cutoff filter-combination device
Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达). Chin. Phys. B, 2015, 24(10): 104216.
[7] An improved transmitting multi-layer thin-film filter
Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达). Chin. Phys. B, 2015, 24(5): 054212.
[8] High-efficiency focusing grating coupler with optimized ultra-short taper
Yang Biao (杨彪), Li Zhi-Yong (李智勇), Yu Yu-De (俞育德), Yu Jin-Zhong (余金中). Chin. Phys. B, 2014, 23(11): 114206.
[9] Wide-angle and broadband graded-refractive-index antireflection coatings
Zhang Jun-Chao (张俊超), Xiong Li-Min (熊利民), Fang Ming (方明), He Hong-Bo (贺洪波). Chin. Phys. B, 2013, 22(4): 044201.
[10] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜). Chin. Phys. B, 2012, 21(12): 124205.
[11] Broadband non-polarizing beam splitter based on guided mode resonance effect
Ma Jian-Yong(麻健勇), Xu Cheng(许程), Qiang Ying-Huai(强颖怀), and Zhu Ya-Bo(朱亚波) . Chin. Phys. B, 2011, 20(10): 104209.
[12] Excellent polarization-independent reflector based on guided mode resonance effect
Xu Cheng(许程), Xu Lin-Min(许林敏), Qiang Ying-Huai(强颖怀), Zhu Ya-Bo(朱亚波), Liu Jiong-Tian(刘炯天), and Ma Jian-Yong(麻健勇) . Chin. Phys. B, 2011, 20(10): 104210.
[13] Analysis of restriction factors of widening diffraction bandwidth of multilayer dielectric grating
Wang Jian-Peng(汪剑鹏), Jin Yun-Xia(晋云霞), Ma Jian-Yong(麻健勇), Shao Jian-Da(邵建达), and Fan Zheng-Xiu(范正修). Chin. Phys. B, 2010, 19(10): 104201.
[14] Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle
Wang Jian-Peng(汪剑鹏), Jin Yun-Xia(晋云霞), Ma Jian-Yong(麻健勇), Shao Jian-Da(邵建达), and Fan Zheng-Xiu(范正修). Chin. Phys. B, 2010, 19(5): 054202.
[15] Graded index broadband antireflection coating prepared by glancing angle deposition for a high-power laser system
Kong Wei-Jin(孔伟金), Shen Zi-Cai(沈自才),Wang Shu-Hua(王淑华),Shao Jian-Da(邵建达), Fan Zheng-Xiu(范正修), and Lu Chao-Jing(卢朝靖). Chin. Phys. B, 2010, 19(4): 044210.
No Suggested Reading articles found!