Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054209    DOI: 10.1088/1674-1056/ac373d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High power semiconductor laser array with single-mode emission

Peng Jia(贾鹏)1, Zhi-Jun Zhang(张志军)4, Yong-Yi Chen(陈泳屹)1,5,†, Zai-Jin Li(李再金)2,‡, Li Qin(秦莉)1, Lei Liang(梁磊)1, Yu-Xin Lei(雷宇鑫)1, Cheng Qiu(邱橙)1, Yue Song(宋悦)1, Xiao-Nan Shan(单肖楠)1, Yong-Qiang Ning(宁永强)1, Yi Qu(曲轶)2, and Li-Jun Wang(王立军)1,3
1 State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 Academician Team Innovation Center of Hainan Province, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China;
3 Peng Cheng Laboratory No. 2, Xingke 1st Street, Nanshan, Shenzhen, China;
4 Liaoning Institute of Science and Technology, Anshan 114051, China;
5 Jlight Semiconductor Technology Co., Ltd., Changchun 130033, China
Abstract  The semiconductor laser array with single-mode emission is presented in this paper. The 6-μ m-wide ridge waveguides (RWGs) are fabricated to select the lateral mode. Thus the fundamental mode of laser array can be obtained by the RWGs. And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A, after that, a kink will appear. The slow axis (SA) far-field divergence angle of the unit is 13.65°. The beam quality factor M2 of the units determined by the second-order moment (SOM) method, is 1.2. This single-mode emission laser array can be used for laser processing.
Keywords:  semiconductor laser arrays      single-mode      high power      high beam quality  
Received:  13 September 2021      Revised:  05 November 2021      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.55.Cr (III-V semiconductors)  
  78.67.De (Quantum wells)  
  42.60.Pk (Continuous operation)  
Fund: Project supported by the National Science and Technology Major Project of China (Grant Nos.2018YFB0504600 and 2017YFB0405102),the Frontier Science Key Program of the President of the Chinese Academy of Sciences (Grant No.QYZDY-SSW-JSC006),the Pilot Project of the Chinese Academy of Sciences (Grant No.XDB43030302),the National Natural Science Foundation of China (Grant Nos.62090051,62090052,62090054,11874353,61935009,61934003,61904179,61727822,61805236,62004194,and 61991433),the Science and Technology Development Project of Jilin Province,China (Grant Nos.20200401062GX,202001069GX,20200501006GX,20200501007GX,20200501008GX,and 20190302042GX),the Key Research and Development Project of Guangdong Province,China (Grant No.2020B090922003),the Equipment Pre-research,China (Grant No.2006ZYGG0304),the Special Scientific Research Project of the Academician Innovation Platform in Hainan Province,China (Grant No.YSPTZX202034),and the Dawn Talent Training Program of CIOMP,China.
Corresponding Authors:  Yong-Yi Chen,E-mail:chenyy@ciomp.ac.cn;Zai-Jin Li,E-mail:lizaijin@126.com     E-mail:  chenyy@ciomp.ac.cn;lizaijin@126.com
About author:  2021-11-6

Cite this article: 

Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军) High power semiconductor laser array with single-mode emission 2022 Chin. Phys. B 31 054209

[1] Pietrzak A, Wenzel H, Crump P, Bugge B, Fricke J, Spreemann M and Erbert G 2012 IEEE J. Quantum. Electron 48 568
[2] Guo W H, Lu Q Y, Nawrocka M, Abdullaev A, O'Callaghan J and Donegan J F 2013 Opt. Express 21 10215
[3] Ma D Z, Chen Y Y, Lei Y X, Jia P, Gao F, Zeng Y G, Liang L, Song Y, Ruan C K, Liu X, Qin L, Ning Y Q and Wang L J 2021 Chin. Phys. B 30 050505
[4] Zhou D B, Liang S, Han L S, Zhao L J and Wang W 2017 Chin. Phys. Lett. 34 034204
[5] Smistrup K, Norregaard J, Mironov A, Bro T H, Bilenberg B, Nielsen T, Eriksen J, Thilsted A H, Hansen O and Kristensen A 2014 Microelectron. Eng. 123 149
[6] Fedorov V Y and Tzortzakis S 2020 Light: Sci. Appl. 9 186
[7] Huang R K, Chann B, Missaggia L J, Augst S J, Connors M K, Turner G W, Rubio A S, Donnelly J P, Hostetler J L, Miester C and Dorsch F 2009 Proceedings of SPIE Conference on Novel in-Plane Semiconductor Lasers VIII, January 26-29, 2009, San Jose, USA, p. 72301G
[8] Zhao Y, Zhang J C, Jia Z W, Liu Y H, Zhuo N, Zhai S Q, Liu F Q and Wang Z G 2016 Chin. Phys. Lett. 33 124201
[9] Lichtenstein N, Manz Y, Mauron P, Fily A, Arlt S, Thies A, Schmidt B, Muller J, Pawlik S, Sverdlov B and Harder C 2004 19th IEEE International Semiconductor Laser Conference, September 21-25, 2004, Matsue, Japan, p. 45
[10] Huang R K, Missaggia L J, Donnelly J P, Harris C T and Turner G W 2005 IEEE Photon. Tech. Lett. 17 959
[11] Donnelly J P, Huang R K, Walpole J N, Missaggia L J, Harris C T, Plant J J, Bailey R J, Mull D E, Goodhue W D and Turner G W 2003 IEEE J. Quantum. Electron 39 289
[12] Müller J, Bättig R, Beer V, Blumer C, Brunner R, Telkkälä J and Wolf J 2019 Proceedings of SPIE High-power Diode Laser Technolog XVII, February 03-05, 2019, San Francisco, USA, p. 10900
[13] Wilkens M, Wenzel H, Fricke J, Maabdorf A, Ressel P, Strohmaier S, Knigge A, Erbert G and Trankle G 2018 IEEE Photon. Tech. Lett. 30 545
[14] Strohmaier S G, Erbert G, Rataj T, Meissner-Schenk A H, Loyo-Maldonado V, Carstens C, Zimer H, Schmidt B, Kaul T, Karow M M, Wilkens M and Crump P 2018 Proceedings of SPIE High-Power Diode Laser Technology XVI, January 29-30, 2018, San Francisco, USA, p. 10514
[15] Sumpf B, Fricke J, Maiwald M, Mueller A, Ressel P, Bugge F, Erbert G and Traenkle G 2014 Semicond. Sci. Technol. 29 045025
[16] Müller A, Fricke J, Brox O, Erbert G and Sumpf B 2016 Semicond. Sci. Technol. 31 125011
[17] Chuan S L 2009 Physics of Photonic Devices-Second Edition (Chichester: John Wiley and Sons) p. 261
[18] Washington: International Standards Organization 2005 ISO 11146-1, Lasers and laser-related equipment — Test methods for laser beam widths, divergence angles and beam propagation ratios — Part 1$: Stigmatic and simple astigmatic beams
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[4] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[5] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[6] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[7] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[8] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[9] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[10] High gain fiber-solid hybrid double-passing end-pumped Nd: YVO4 picosecond amplifier with high beam quality
Xueyan Dong(董雪岩), Pingxue Li(李平雪), Shun Li(李舜), Dongsheng Wang(王东生). Chin. Phys. B, 2020, 29(5): 054207.
[11] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[12] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[13] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[14] Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror
Ke Yin(殷科), Yi-Ming Li(李仪茗), Yan-Bin Wang(王彦斌), Xin Zheng(郑鑫), Tian Jiang(江天). Chin. Phys. B, 2019, 28(12): 124203.
[15] High power external-cavity surface-emitting laser with front and end pump
Lidan Jiang(蒋丽丹), Renjiang Zhu(朱仁江), Maohua Jiang(蒋茂华), Dingke Zhang(张丁可), Yuting Cui(崔玉亭), Peng Zhang(张鹏), Yanrong Song(宋晏蓉). Chin. Phys. B, 2018, 27(8): 084205.
No Suggested Reading articles found!