ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks |
Pan Zhang(张攀)1,2, Yan-Yan Zhang(张颜艳)1,†, Ming-Kun Li(李铭坤)1,2, Bing-Jie Rao(饶冰洁)1, Lu-Lu Yan(闫露露)1, Fa-Xi Chen(陈法喜)1, Xiao-Fei Zhang(张晓斐)1, Qun-Feng Chen(陈群峰)3, Hai-Feng Jiang(姜海峰)‡2,4,‡, and Shou-Gang Zhang(张首刚)1,2 |
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; 2 University of the Chinese Academy of Sciences, Beijing 100049, China; 3 Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 4 School of Physics Sciences, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We demonstrate an optical frequency comb (OFC) based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers, for the comparison of frequency among optical clocks with wavelengths of 698 nm, 729 nm, 1068 nm, and 1156 nm. We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths, enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed 30 dB at a resolution bandwidth of 300 kHz. This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC. However, more out-of-loop fibers degrade the long-term frequency instability due to thermal drift. To minimize the thermal drift effect, we set the fiber lengths of different branches to be similar, and we stabilize the temperature as well. The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about 5.5×10-19 for 4000 s, while the in-loop frequency instability of fceo and that of fbeat are 7.5×10-18 for 1 s and 8.5×10-18 for 1 s, respectively. The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.
|
Received: 26 October 2021
Revised: 23 November 2021
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB35030101),the National Natural Science Foundation of China (Grant No.61825505),the Quantum Control and Quantum Information of the National Key Research and Development Program of China (Grant No.2020YFA0309800),and the Natural Science Basic Research Program of Shaanxi Province,China (Grant No.2020JQ434). |
Corresponding Authors:
Yan-Yan Zhang,E-mail:zhangyanyan@ntsc.ac.cn;Hai-Feng Jiang,E-mail:hjiang1@ustc.edu.cn
E-mail: zhangyanyan@ntsc.ac.cn;hjiang1@ustc.edu.cn
|
About author: 2021-12-8 |
Cite this article:
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰)‡, and Shou-Gang Zhang(张首刚) All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks 2022 Chin. Phys. B 31 054210
|
[1] Bloom B J, Nicholson T L, Williams S L, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [2] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 [3] Nicholson T L, Campbell S L, Hutson R B, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mcnally R L, Zhang W, Barrett M D, Safronova M S and Strouse G F 2015 Nat. Commun. 6 6896 [4] Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett. 116 063001 [5] Ai D, Qiao H, Zhang S, Luo L M, Sun C Y, Zhang S, Peng C Q, Qi Q C, Jin T Y, Zhou M and Xu X Y 2020 Chin. Phys. B 29 090601 [6] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004 [7] Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S and Jefferts S R 2014 Metrologia 51 174 [8] Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelect. 59 391 [9] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701 [10] Fritz R 2015 C. R. Phys. 16 506 [11] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188 [12] Beloy K, Bodine M I, Bothwell T, et al. 2021 Nature 591 564 [13] Bodine M I, Ellis J L, Swann W C, Stevenson S A, Deschênes J D, Hannah E D, Manurkar P, Newbury N R and Sinclair L C 2020 APL Photonics 5 076113 [14] Shen Q, Guan J Y, Zeng T, Lu Q M, Huang L, Cao Y, Chen J P, Tao T Q, Wu J C, Hou L, Liao S H, Ren J G, Yin J, Jia J J, Jiang H F, Peng C Z, Zhang Q and Pan J W 2020 Optica 8 471 [15] Lisdat C, Grosche G, Quintin N, et al. 2016 Nat. Commun. 7 1 [16] Chou C W, Hume R B, Rosenband T and Wineland D J 2010 Science 329 1630 [17] Kolkowitz S, Pikovski I, Langellier N, Lukin M, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043 [18] Derevianko A and Pospelov M 2013 Nat. Phys. 10 933 [19] Diddams S A, Jones D J, Ye J, Cundiff S T and Hall J H 2000 Phys. Rev. Lett. 84 5102 [20] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51 [21] Hänsch T W 2006 Rev. Mod. Phys. 78 1297 [22] Hall J L 2006 Rev. Mod. Phys. 78 1279 [23] Ma L S, Bi Z Y, Bartels A, Robersson L, Zucco M, Windeler R S, Wilpers G, Oates C, Hollberg L and Diddams S A 2004 Science 303 1843 [24] Schibli T R, Minoshima K, Hong F L, Onae I A and Matsumoto H 2004 Opt. Lett. 29 2467 [25] Droste S, Ycas G, Washburn B R, Coddington I and Newbury N R 2016 Nanophotonics 5 196 [26] Hofer M, Fermann M E, Haberl F, Ober M H and Schmidt A J 1991 Opt. Lett. 16 502 [27] Kuse N, Lee C C, Jiang J, Mohr C, Schibli T R and Fermann M E 2015 Opt. Express 23 24342 [28] Kuse N, Jiang J, Lee C C, Schibli T R and Fermann M E 2016 Opt. Express 24 3095 [29] Baumann E, Giorgetta F R, Nicholson J W, Swann W C, Coddington I and Newbury N R 2009 Opt. Lett. 34 638 [30] Lezius M, Wilken T, Deutsch C, et al. 2016 Optica 3 1381 [31] Pröbster B J, Lezius M, Mandel O, Braxmiare C and Holzwarth R 2021 J. Opt. Soc. Am. B 38 932 [32] Leopardi H, Davila-Rodriguez J, Quinlan F, Olson J, Sherman J A, Diddams S A and Fortier T M 2017 Optica 4 879 [33] Rolland A, Li P, Kuse N, Jiang J, Cassinerio M, Langrock C and Fermann M E 2018 Optica 5 1070 [34] Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M and Hong F L 2019 Opt. Express 27 6404 [35] Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G and Cop Y L 2014 Nat. Photon. 8 219 [36] Hong L, Donald D K and Sorin W V 1994 J. Lightwave Technol. 12 1121 [37] Yan L L, Zhang Y Y, Zhang L, Fan S T, Zhang X F, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. Lett. 32 104207 [38] Diddams S A, Hollberg L, Ma LS and Robertsson L 2002 Opt. Lett. 27 58 [39] Kubina P, Adel P, Adler F, Grosche G, Hänsch T W, Holzwarth R, Leitenstorfer A, Lipphardt B and Schnatz H 2005 Opt. Express 13 904 [40] Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T and Hong F L 2010 Opt. Express 18 1667 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|