Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054210    DOI: 10.1088/1674-1056/ac40f6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks

Pan Zhang(张攀)1,2, Yan-Yan Zhang(张颜艳)1,†, Ming-Kun Li(李铭坤)1,2, Bing-Jie Rao(饶冰洁)1, Lu-Lu Yan(闫露露)1, Fa-Xi Chen(陈法喜)1, Xiao-Fei Zhang(张晓斐)1, Qun-Feng Chen(陈群峰)3, Hai-Feng Jiang(姜海峰)2,4,‡, and Shou-Gang Zhang(张首刚)1,2
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 University of the Chinese Academy of Sciences, Beijing 100049, China;
3 Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
4 School of Physics Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract  We demonstrate an optical frequency comb (OFC) based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers, for the comparison of frequency among optical clocks with wavelengths of 698 nm, 729 nm, 1068 nm, and 1156 nm. We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths, enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed 30 dB at a resolution bandwidth of 300 kHz. This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC. However, more out-of-loop fibers degrade the long-term frequency instability due to thermal drift. To minimize the thermal drift effect, we set the fiber lengths of different branches to be similar, and we stabilize the temperature as well. The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about 5.5×10-19 for 4000 s, while the in-loop frequency instability of fceo and that of fbeat are 7.5×10-18 for 1 s and 8.5×10-18 for 1 s, respectively. The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.
Keywords:  optical frequency comb      nonlinear amplifying loop mirror      optical clock      frequency instability  
Received:  26 October 2021      Revised:  23 November 2021      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB35030101),the National Natural Science Foundation of China (Grant No.61825505),the Quantum Control and Quantum Information of the National Key Research and Development Program of China (Grant No.2020YFA0309800),and the Natural Science Basic Research Program of Shaanxi Province,China (Grant No.2020JQ434).
Corresponding Authors:  Yan-Yan Zhang,E-mail:zhangyanyan@ntsc.ac.cn;Hai-Feng Jiang,E-mail:hjiang1@ustc.edu.cn     E-mail:  zhangyanyan@ntsc.ac.cn;hjiang1@ustc.edu.cn
About author:  2021-12-8

Cite this article: 

Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚) All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks 2022 Chin. Phys. B 31 054210

[1] Bloom B J, Nicholson T L, Williams S L, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[2] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[3] Nicholson T L, Campbell S L, Hutson R B, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mcnally R L, Zhang W, Barrett M D, Safronova M S and Strouse G F 2015 Nat. Commun. 6 6896
[4] Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett. 116 063001
[5] Ai D, Qiao H, Zhang S, Luo L M, Sun C Y, Zhang S, Peng C Q, Qi Q C, Jin T Y, Zhou M and Xu X Y 2020 Chin. Phys. B 29 090601
[6] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[7] Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S and Jefferts S R 2014 Metrologia 51 174
[8] Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelect. 59 391
[9] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701
[10] Fritz R 2015 C. R. Phys. 16 506
[11] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[12] Beloy K, Bodine M I, Bothwell T, et al. 2021 Nature 591 564
[13] Bodine M I, Ellis J L, Swann W C, Stevenson S A, Deschênes J D, Hannah E D, Manurkar P, Newbury N R and Sinclair L C 2020 APL Photonics 5 076113
[14] Shen Q, Guan J Y, Zeng T, Lu Q M, Huang L, Cao Y, Chen J P, Tao T Q, Wu J C, Hou L, Liao S H, Ren J G, Yin J, Jia J J, Jiang H F, Peng C Z, Zhang Q and Pan J W 2020 Optica 8 471
[15] Lisdat C, Grosche G, Quintin N, et al. 2016 Nat. Commun. 7 1
[16] Chou C W, Hume R B, Rosenband T and Wineland D J 2010 Science 329 1630
[17] Kolkowitz S, Pikovski I, Langellier N, Lukin M, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[18] Derevianko A and Pospelov M 2013 Nat. Phys. 10 933
[19] Diddams S A, Jones D J, Ye J, Cundiff S T and Hall J H 2000 Phys. Rev. Lett. 84 5102
[20] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[21] Hänsch T W 2006 Rev. Mod. Phys. 78 1297
[22] Hall J L 2006 Rev. Mod. Phys. 78 1279
[23] Ma L S, Bi Z Y, Bartels A, Robersson L, Zucco M, Windeler R S, Wilpers G, Oates C, Hollberg L and Diddams S A 2004 Science 303 1843
[24] Schibli T R, Minoshima K, Hong F L, Onae I A and Matsumoto H 2004 Opt. Lett. 29 2467
[25] Droste S, Ycas G, Washburn B R, Coddington I and Newbury N R 2016 Nanophotonics 5 196
[26] Hofer M, Fermann M E, Haberl F, Ober M H and Schmidt A J 1991 Opt. Lett. 16 502
[27] Kuse N, Lee C C, Jiang J, Mohr C, Schibli T R and Fermann M E 2015 Opt. Express 23 24342
[28] Kuse N, Jiang J, Lee C C, Schibli T R and Fermann M E 2016 Opt. Express 24 3095
[29] Baumann E, Giorgetta F R, Nicholson J W, Swann W C, Coddington I and Newbury N R 2009 Opt. Lett. 34 638
[30] Lezius M, Wilken T, Deutsch C, et al. 2016 Optica 3 1381
[31] Pröbster B J, Lezius M, Mandel O, Braxmiare C and Holzwarth R 2021 J. Opt. Soc. Am. B 38 932
[32] Leopardi H, Davila-Rodriguez J, Quinlan F, Olson J, Sherman J A, Diddams S A and Fortier T M 2017 Optica 4 879
[33] Rolland A, Li P, Kuse N, Jiang J, Cassinerio M, Langrock C and Fermann M E 2018 Optica 5 1070
[34] Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M and Hong F L 2019 Opt. Express 27 6404
[35] Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G and Cop Y L 2014 Nat. Photon. 8 219
[36] Hong L, Donald D K and Sorin W V 1994 J. Lightwave Technol. 12 1121
[37] Yan L L, Zhang Y Y, Zhang L, Fan S T, Zhang X F, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. Lett. 32 104207
[38] Diddams S A, Hollberg L, Ma LS and Robertsson L 2002 Opt. Lett. 27 58
[39] Kubina P, Adel P, Adler F, Grosche G, Hänsch T W, Holzwarth R, Leitenstorfer A, Lipphardt B and Schnatz H 2005 Opt. Express 13 904
[40] Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T and Hong F L 2010 Opt. Express 18 1667
[1] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[2] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[3] Dynamic polarizabilities of the clock states of Al+
Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2022, 31(8): 083102.
[4] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[5] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[8] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[9] Cold atom clocks and their applications in precision measurements
Shao-Yang Dai(戴少阳), Fa-Song Zheng(郑发松), Kun Liu(刘昆), Wei-Liang Chen(陈伟亮), Yi-Ge Lin(林弋戈), Tian-Chu Li(李天初), and Fang Fang(房芳). Chin. Phys. B, 2021, 30(1): 013701.
[10] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[11] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[12] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[13] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[14] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[15] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
No Suggested Reading articles found!