CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides |
Liu Xiao-Dong(刘晓东)a)b)† , Meng Dong-Dong(孟冬冬)a), Hagihala Masato(萩原雅人)a), and Zheng Xu-Guang(郑旭光)a)c) |
aDepartment of Physics, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan; b Department of Physics, College of Science, Tianjin Polytechnic University, Tianjin 300160, China; c Department of Physics, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan |
|
|
Abstract Raman vibrational spectra of the selected basic (hydroxyl OH and deuteroxyl OD) transition-metal halides, geometrically frustrated material series $\alpha $-, $\beta $-, $\gamma $-Cu$_{2}$(OH)$_{3}$Cl, $\alpha $-Cu$_{2}$(OH)$_{3}$Br, $\beta $-Ni$_{2}$(OH)$_{3}$Cl, $\beta $-Co$_{2}$(OH)$_{3}$Cl, $\beta $-Co$_{2}$(OH)$_{3}$Br, $\gamma $-Cu$_{2}$(OD)$_{3}$Cl, and $\beta $-Co$_{2}$(OD)$_{3}$Cl are measured at room temperature and analysed to investigate the relationship between the microstructured OH environments and their respective Raman spectra. Among these selected samples, the last two are used to determine the OH stretching vibration region (3600 cm$^{-1}$--3300 cm$^{{-}1}$) and OH bending vibration region (1000 cm$^{-1}$--600 cm$^{-1}$) of OH systems in the spectra. Through the comparative analysis of the distances $d$(metal--O), $d$(O--halogen), and $d$(OH), the strong metal--O interaction and trimeric hydrogen bond ($C_{3v}$, $C_{s}$ or $C_{1}$ symmetry) are found in every material, but both determine simultaneously an ultimate $d$(OH), and therefore an OH stretching vibration frequency. According to the approximately linear relationship between the OH stretching vibration frequency and $d$(OH), some unavailable $d$(OH) are guessed and some doubtful $d$(OH) are suggested to be corrected. In addition, it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group.
|
Received: 24 January 2011
Revised: 14 February 2011
Accepted manuscript online:
|
|
Fund: Project supported by the Grant-in-Aid for Scientific Research on Priority Area from the Ministry of Education, Culture, Sports,
Science and Technology, Japan (Grant No. Tokutei 22014008). |
Cite this article:
Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), and Zheng Xu-Guang(郑旭光) Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides 2011 Chin. Phys. B 20 087801
|
[1] |
Buckingham A D, Del Bene J E and McDowell S A C 2008 Chem. Phys. Lett. 463 1
|
[2] |
Arunan E 2007 Curr. Sci. 92 17
|
[3] |
Gilli G and Gilli P 2000 J. Mol. Struc. 552 1
|
[4] |
Barnes A J 2004 J. Mol. Struc. 704 3
|
[5] |
Novak A 1974 Struc. Bond. 18 177
|
[6] |
Mikenda W 1986 J. Mol. Struc. 147 1
|
[7] |
Beckenkamp K and Lutz H D 1992 J. Mol. Struc. 270 393
|
[8] |
Schmidt M and Lutz H D 1993 Phys. Chem. Minerals 20 27
|
[9] |
Subramanian S and Zaworotko M J 1994 Coord. Chem. Rev. 137 357
|
[10] |
Lutz H D, Mdller H and Schmidt M 1994 J. Mol. Struc. 328 121
|
[11] |
Lutz H D 1995 Struc. Bond. 82 85
|
[12] |
Libowitzky E 1999 Monatsh. Chem. 130 1047
|
[13] |
Mortel R and Lutz H D 2003 J. Mol. Struc. 648 171
|
[14] |
Hase Y 2006 J. Braz. Chem. Soc. 17 741
|
[15] |
Zheng X G and Otabe E S 2004 Solid State Commun. 130 107
|
[16] |
Zheng X G and Xu C N 2004 Solid State Commun. 131 509
|
[17] |
Zheng X G, Kawae T, Kashitani Y, Li C S, Tateiwa N, Takeda K, Yamada H, Xu C N and Ren Y 2005 Phys. Rev. B 71 052409
|
[18] |
Zheng X G, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K and Xu C N 2005 Phys. Rev. B 71 174404
|
[19] |
Zheng X G, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A and Xu C N 2005 Phys. Rev. Lett. 95 057201
|
[20] |
Zheng X G and Nishiyama K 2006 Physica B 374—375 156
|
[21] |
Zheng X G, Kawae T, Yamada H, Nishiyama K and Xu C N 2006 Phys. Rev. Lett. 97 247204
|
[22] |
Hagihala M, Zheng X G, Toriyi T and Kawae T 2007 J. Phys.: Condens. Matter 19 145281
|
[23] |
Zheng X G, Hagihala M, Toriyi T 2007 J. Magn. Magn. Mater. 310 1288
|
[24] |
Zheng X G, Hagihala M, Kawae T and Xu C N 2008 Phys. Rev. B 77 024418
|
[25] |
Hagihala M, Zheng X G and Kawae T 2009 Physica B 404 671
|
[26] |
Fujihala M, Hagihala M, Zheng X G and Kawae T 2009 Physica B 404 674
|
[27] |
Zheng X G, Hagihala M, Nishiyama K and Kawae T 2009 Physica B 404 677
|
[28] |
Zheng X G, Yamashita T, Hagihala M, Fujihala M and Kawae T 2009 Physica B 404 680
|
[29] |
Zheng X G, Hagihala M, Fujihala M and Kawae T 2009 J. Phys.: Conf. Ser. 145 012034
|
[30] |
Fujihala M, Hagihala M, Zheng X G and Kawae T 2010 Phys. Rev. B 82 024425
|
[31] |
Kim J H, Ji S, Lee S H, Lake B, Yildirim T, Nojiri H, Kikuchi H, Habicht K, Qiu Y and Kiefer K 2008 Phys. Rev. Lett. 101 107201
|
[32] |
Wills A S and Henry J Y 2008 J. Phys.: Condens. Matter 20 472206
|
[33] |
Wills A S, Perring T G, Raymond S, Fak B, Henry J Y and Telling M 2009 J. Phys: Conf. Ser. 145 012056
|
[34] |
Kubo H, Zenmyo K, Tokita M, Hamasaki T, Hagihala M and Zheng X G 2008 J. Phys. Soc. Jpn. 77 013407
|
[35] |
Tokita M and Zenmyo K 2009 J. Phys.: Conf. Ser. 150 042208
|
[36] |
Maegawa S, Oyamada A, Sato S, Nishiyama M, Itou T and Zheng X G 2009 J. Phys.: Conf. Ser. 145 012018
|
[37] |
Maegawa S, Oyamada A and Sato S 2010 J. Phys. Soc. Jpn. 79 011002
|
[38] |
Martens W, Frost R L and Williams P A 2003 N. Jb. Miner. Abh. 178 197
|
[39] |
Frost R L, Martens W, Kloprogge J T and Williams P A 2003 J. Raman Spectrosc. 33 801
|
[40] |
Frost R L 2003 Spectrochimica Acta Part A 59 1195
|
[41] |
Macalik L, Maczka M, Solarz P, Fuentes A F, Matsuhira K and Hiroi Z 2009 Opt. Mater. 31 790
|
[42] |
Maczka M, Sanjuan M L, Fuentes A F, Macalik L, Hanuza J, Matsuhira K and Hiroi Z 2009 Phys. Rev. B 79 214437
|
[43] |
Ionic Radius Wikipedia, the Free Encyclopedia http://en.wikipedia.org/wiki/Ionic radius [2011-1-25]
|
[44] |
Liu X D, Hagihala M, Zheng X G, Tao W J, Meng D D, Zhang S L and Guo Q X 2011 Chin. Phys. Lett. 28 017803
|
[45] |
Liu X D, Tao W J, Zheng X G, Hagihala M, Meng D D and Guo Q X 2011 Acta Phys. Sin. 60 037803 (in Chinese)
|
[46] |
Liu X D, Hagihala M, Zheng X G and Guo Q X 2011 Chin. Phys. B 20 077801
|
[47] |
Liu X D, Hagihala M, Zheng X G and Guo Q X 2011 Vibrat. Spectrosc. 56 177
|
[48] |
Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry 6th edn. (New York: John Wiley & Sons)
|
[49] |
Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry 6th edn. (New York: John Wiley & Sons)
|
[50] |
Ergun H B, Gehring K A and Gehring G A 1976 J. Phys. C: Solid State Phys. 9 1101
|
[51] |
Lagaron J M 2002 Macromol. Symp. 184 19
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|