Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 083301    DOI: 10.1088/1674-1056/21/8/083301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The effect of anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1ν12 of liquid pyridine

Li Dong-Fei (李东飞)a b, Gao Shu-Qin (高淑琴)b, Sun Cheng-Lin (孙成林)a b, Li Zuo-Wei (里佐威 )a b
a State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
b College of Physics, Jilin University, Changchun 130012, China
Abstract  The effects of anti-hydrogen bond on the ν1ν12 Fermi resonance (FR) of pyridine are experimentally investigated by using Raman scattering spectroscopy. Three systems, pyridine/water, pyridine/formamide, pyridine/carbon tetrachloride, provide varying degrees of strength for the diluent-pyridine anti-hydrogen bond complex. Water forms a stronger anti-hydrogen bond with pyridine than with formamide, and in the case of adding non-polar solvent carbon tetrachloride, which is neither a hydrogen bond donor nor an acceptor and incapable of forming hydrogen bond with pyridine, the intermolecular distance of pyridine will increase and the interaction of pyridine molecules will reduce. The dilution studies are performed on the three systems. Comparing with the values of Fermi coupling coefficient W of the ring breathing mode ν 1 and triangle mode ν 12 of pyridine at different volume concentrations, which are calculated according to the Bertran equations, in three systems, we find that the solution with the strongest anti-hydrogen bond, water, shows the fastest change in the ν1ν12 Fermi coupling coefficient W with the volume concentration varying, followed by the formamide and carbon tetrachloride solutions. These results suggest that the stronger anti-hydrogen bond-forming effect will cause a greater reduction in the strength of the ν1ν12 FR of pyridine. According to the mechanism of the formation of anti-hydrogen bond in the complexes and the FR theory, a qualitative explanation for the anti-hydrogen bond effect in reducing the strength of the ν1ν12 FR of pyridine is given.
Keywords:  Fermi resonance      Raman spectrum      anti-hydrogen bond  
Received:  09 July 2011      Revised:  11 November 2011      Accepted manuscript online: 
PACS:  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974067) and the Graduate Innovation Fund of Jilin University, China (Grant No. 20101055).
Corresponding Authors:  Li Zuo-Wei     E-mail:  zuowei_li@163.com

Cite this article: 

Li Dong-Fei (李东飞), Gao Shu-Qin (高淑琴), Sun Cheng-Lin (孙成林), Li Zuo-Wei (里佐威 ) The effect of anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1ν12 of liquid pyridine 2012 Chin. Phys. B 21 083301

[1] Kirby A J 1997 Acc. Chem. Res. 30 290
[2] Hobza P and Sponer J 1999 Chem. Rev. 99 3247
[3] Jeffrey G A 1997 An Introduction to Hydrogen Bonding (New York: Oxford University Press)
[4] Vinogradov S N and Linnell R H 1971 Hydrogen Bonding (New York: Van Nostrand Reinhold)
[5] Pimentel G C and McClellan A L 1960 The Hydrogen Bond (San Fransisco: W. H. Freeman)
[6] Scheiner S 1997 Hydrogen Bonding (New York: Oxford University Press)
[7] Desiraju G R and Steiner T 1999 The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford: Oxford University Press)
[8] Hobza P and Havlas Z 2000 Chem. Rev. 100 4253
[9] Li A Y, Ji H B and Cao L J 2009 J. Chem. Phys. 131 164305
[10] Baer T and Hase W L 1996 Unimolecular Reaction Ddynamics (New York:: Oxford University Press)
[11] Wyatt R E and Zhang J Z H 1996 Dynamics of Molecules and Chemical Reaction (New York: Marcel Dekker)
[12] Fujisaki H, Yagi K, Hirao K and Straub J E 2007 Chem. Phys. Lett. 443 6
[13] Fermi E 1931 Z. Phys. 71 250
[14] Andrzej Hacura 1997 Phys. Lett. A 227 237
[15] Denis Ostrovskii, Magnus Edvardsson and Per Jacobsson 2003 J. Raman Spectrosc. 34 40
[16] Kiyoshi Yagi, So Hirata and Kimihiko Hirao 2008 Phys. Chem. Chem. Phys. 10 1781
[17] Aoki K, Yamawaki H and Sakashita M 1995 Science 268 1322
[18] Viktor V Struzhkin, Alexander F Goncharov, Russell J Hemley and Ho-Kwang Mao 1997 Phys. Rev. Lett. 78 4446
[19] Song M, Yamawaki H, Fujihisa H, Sakashita M and Aoki K 1999 Phys. Rev. B 60 12644
[20] Jiang X L, Yang G, Li D F, Zhou M, Sun C L, Gao S Q and Li Z W 2010 Chin. Phys. B 19 103301
[21] Cao B, Zuo J, Li Z W, Ouyang S L, Gao S Q, Lu G H and Jiang Y H 2009 Acta Phys. Sin. 58 3538 (in Chinese)
[22] Charles H K and John T 1944 J. Chem. Phys. 12 300
[23] Zakin M R, Grubb S G, King H E and Herschbach D R 1986 J. Chem. Phys. 84 1080
[24] Thomas W Bell, Alisher B Khasanov and Michael G B Drew 2002 J. Am. Chem. Soc. 124 14092
[25] Erik R Berg, Sarah A Freeman, Daniel D Green and Darin J Ulness 2006 J. Phys. Chem. A 110 13434
[26] Kreyenschmidt M, Eysel H H and Asthana B P 1993 J. Raman Spectrosc. 24 645
[27] Dheeraj K Singh, Shivangi Mishra, Animesh K Ojha, Sunil K Srivastava, Schlucker S, Asthana B P, Popp J and Ranjan K Singh 2011 J. Raman Spectrosc. 42 667
[28] Schwartz M and Wang C H 1973 J. Chem. Phys. 59 5258
[29] Bertran J F, Ballester L and Dobrihalova L 1968 Spectrochimica Acta 24 1765
[30] Asthana B P, Takahashi H and Kiefer W 1983 Chem. Phys. Lett. 94 41
[31] Schlucker S, Heid M, Singh R K, Asthana B P, Popp J and Kiefer W 2002 Z. Phys. Chem. 216 267
[32] Schlucker S, Singh R K, Asthana B P, Popp J and Kiefer W 2001 J. Phys. Chem. A 105 9983
[1] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[2] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[3] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[4] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[5] Near-zero thermal expansion of In2(1-x)(HfMg)xMo3O12 with tailored phase transition
Yong-Guang Cheng(程永光), Yan-Chao Mao(毛彦超), Xain-Sheng Liu(刘献省), Bao-He Yuan(袁保合), Ming-Ju Chao(晁明举), Er-Jun Liang(梁二军). Chin. Phys. B, 2016, 25(8): 086501.
[6] Vibrational features of confined water in nanoporous TiO2 by Raman spectra
Xin Gao(高欣), Qiang Wang(王强), Gang Sun(孙刚), Chen-Xi Li(李晨曦), Lin Hu(胡林). Chin. Phys. B, 2016, 25(2): 026801.
[7] Strain analysis of free-standing strained silicon-on-insulator nanomembrane
Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强). Chin. Phys. B, 2015, 24(3): 036801.
[8] Synthesis, structure, optical, and electric properties of Ce-doped CuInTe2 compound
Fu Li (付丽), Guo Yong-Quan (郭永权). Chin. Phys. B, 2014, 23(12): 127801.
[9] High-sensitive automatic transient laser-induced breakdown spectroscopy system with high temporal and spatial resolution
Liu Qiao-Jun (刘巧君), S. K. Fong (冯瑞权), Andrew Y. S. Cheng (郑玉臣), Luo Shi-Rong (罗时荣), K. S. Tam (谭建成), Zhu Jian-Hua (朱建华), A. Viseu (冼保生). Chin. Phys. B, 2012, 21(8): 087402.
[10] Substrate-induced stress in silicon nanocrystal/SiO2 multilayer structure
Tao Ye-Liao(陶也了), Zuo Yu-Hua(左玉华), Zheng Jun(郑军), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), Wang Qi-Ming(王启明), and Xu Jun(徐骏) . Chin. Phys. B, 2012, 21(7): 077402.
[11] Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides
Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), and Zheng Xu-Guang(郑旭光) . Chin. Phys. B, 2011, 20(8): 087801.
[12] $\gamma$ radiation caused graphene defects and increased carrier density
Han Mai-Xing(韩买兴), Ji Zhuo-Yu(姬濯宇), Shang Li-Wei(商立伟), Chen Ying-Ping(陈映平), Wang Hong(王宏), Liu Xin(刘欣), Li Dong-Mei(李冬梅), and Liu Ming(刘明). Chin. Phys. B, 2011, 20(8): 086102.
[13] Influence of pressure effect on Fermi resonance in binary solution
Jiang Xiu-Lan(蒋秀兰), Yang Guang(杨光), Li Dong-Fei(李东飞), Zhou Mi(周密), Sun Cheng-Lin(孙成林), Gao Shu-Qin(高淑琴), and Li Zuo-Wei(里佐威). Chin. Phys. B, 2010, 19(10): 103301.
[14] First-principles calculations on the electronic and vibrational properties of $\beta$-V2O5
Zhou Bo(周波), Su Qing(苏庆), and He De-Yan(贺德衍). Chin. Phys. B, 2009, 18(11): 4988-4994.
No Suggested Reading articles found!