INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Thermodynamically consistent model for diblock copolymer melts coupled with an electric field |
Xiaowen Shen(沈晓文)1,2 and Qi Wang(王奇)3,† |
1 School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China; 2 Beijing Computational Science Research Center, Beijing 100193, China; 3 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA |
|
|
Abstract We present a thermodynamically consistent model for diblock copolymer melts coupled with an electric field derived using the Onsager linear response theory. We compare the model with the thermodynamically inconsistent one previously used for the coupled system to highlight their differences in describing transient dynamics.
|
Received: 26 May 2021
Revised: 03 September 2021
Accepted manuscript online: 16 September 2021
|
PACS:
|
82.35.Jk
|
(Copolymers, phase transitions, structure)
|
|
82.60.Lf
|
(Thermodynamics of solutions)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
64.70.qd
|
(Thermodynamics and statistical mechanics)
|
|
Fund: Xiaowen Shen's research is partially supported by the National Natural Science Foundation of China (Grant Nos. 11971051 and U1930402). Qi Wang's research is partially supported by National Science Foundation grants (award DMS-1815921, 1954532 and OIA-1655740) and a GEAR award from SC EPSCoR/IDeA Program. |
Corresponding Authors:
Qi Wang
E-mail: qwang@math.sc.edu
|
Cite this article:
Xiaowen Shen(沈晓文) and Qi Wang(王奇) Thermodynamically consistent model for diblock copolymer melts coupled with an electric field 2022 Chin. Phys. B 31 048201
|
[1] Parka C, Yoonb J and Thomas E L 2003 Polymer 44 6725 [2] Liu M J, Li S B, Zhang L X and Wang X H 2010 Chin. Phys. B 19 028101 [3] Zhang X M, Shen B F, Zhang L G and Shi Y 2021 High Power Laser Science and Engineering 9 e28 [4] Geng X B, Pan J X, Zhang J J, Sun M N and Cen J Y 2013 Chin. Phys. B 27 058102 [5] Feng H B, Lu X Y, Wang W Y, Kang N G and Mays J W 2017 Polymer 9 494 [6] Ohta T and Kawasaki K 1986 Macromolecules 19 2621 [7] Ohta T and Nonomura M 1998 Eur. Phys. J. B 2 57 [8] Choksi R and Ren X F 2003 J. Stat. Phys. 113 151 [9] Choksi R and Ren X F 2005 Physica D 203 100-119 [10] Pestera C W, Liedel C, Ruppel M and Böker A 2017 Prog. Polym. Sci. 64 182 [11] Faghihi N, Mkhonta S, Elder K R and Grant M 2018 Eur. Phys. J. B 91 55 [12] Kyrylyuk A V, Sevink G J A, Zvelindovsky A V and Fraaije J G E M 2003 Macromol. Theory Simul. 12 508 [13] Lyakhova K S, Zvelindovsky A V and Sevink G J A 2004 AIP Conf. Proc. 708 217 [14] Borja L J, Zurch M, Pemmaraju C D, Schultze M, Ramasesha K, Gandman A, Prell J S, Prendergast D, Neumark D M and Leone S R 2016 United States [15] Lyakhova K S, Zvelindovsky A V and Sevink G J A 2006 Macromolecules 39 3024 [16] Schmidt K, Schoberth H G, Schubert F, Hänsel H,Fischer F, Weiss T M, Sevink G J A, Zvelindovsky A V, Böker A and Krausch G 2007 Soft Matter 3 448 [17] Ly D Q, Honda T, Kawakatsu T and Zvelindovsky A V 2007 Macromolecules 40 2928 [18] Ly D Q, Honda T, Kawakatsu T and Zvelindovsky A V 2008 Macromolecules 41 4501 [19] Wu X F and Dzenis Y A 2008 Phys. Rev. E 77 031807 [20] Ding Y, Yang Q, Guo X, Wang S S, Gu F X, Fu J, Wan Q, Cheng J P and Tong L M 2009 Opt. Express 17 21813 [21] Sevink G J A, Pinna M, Langner K M and Zvelindovsky A V 2011 Soft Matter 7 5161 [22] Ly D Q, Pinna M, Honda T, Kawakatsu T and Zvelindovsky A V 2013 J. Chem. Phys. 138 074904 [23] Orizaga S and Glasner K 2016 Phys. Rev. E 93 052504 [24] Cheng Q, Yang X F and Shen J 2017 J. Comput. Phys. 341 44 [25] Chen C J, Li X, Zhang J and Yang X F 2021 Appl. Math. Comput. 388 125463 [26] Zhang J, Chen C J, Yang X F and Pan K J 2020 J. Comput. Appl. Math. 378 112905 [27] Böker A, Elbs H, Hänsel H, Knoll A, Ludwigs S, Zettl H, Zvelindovsky A V, Sevink G J A, Urban V, Abetz V, Müller A H E and Krausch G 2003 Macromolecules 36 8078 [28] Xu T, Zvelindovsky A V, Sevink G J A, Gang O, Ocko B, Zhu Y Q, Gido S P and Russell T P 2004 Macromolecules 37 6980 [29] Onsager L 1931 Phys. Rev. 37 405 [30] Onsager L 1931 Phys. Rev. 38 2265 [31] Onsager L and Machlup S 1953 Phys. Rev. 91 1505 [32] Yang X G, Li J, Forest M G and Wang Q 2016 Entropy 18 202 [33] Wang Q 2021 Frontiers and progress of current soft matter research (Singapore:Springer Nature) pp. 101-132 [34] Landau L D and Lifshitz E M 1984 Electrodynamics of continuous media, 2nd edn. (Pergamon:Elsevier) pp. 34-85 [35] Yang X F and Zhao J 2019 Comm. Comp. Phys. 25 703 [36] Zhao J, Yang X F, Gong Y Z, Zhao X P, Yang X G, Li J and Wang Q 2018 Int. J. Numer. Anal. Mod. 15 884 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|