Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048104    DOI: 10.1088/1674-1056/ac3398

Phase-field modeling of faceted growth in solidification of alloys

Hui Xing(邢辉)1, Qi An(安琪)1, Xianglei Dong(董祥雷)2,†, and Yongsheng Han(韩永生)3
1 The Key Laboratory of Space Applied Physics and Chemistry, Northwestern Polytechnical University, Xi'an 710029, China;
2 College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
3 The EMMS Group, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A regularization of the surface tension anisotropic function used in vapor-liquid-solid nanowire growth was introduced into the quantitative phase-field model to simulate the faceted growth in solidification of alloys. Predicted results show that the value of δ can only affect the region near the tip, and the convergence with respect to δ can be achieved with the decrease of δ near the tip. It can be found that the steady growth velocity is not a monotonic function of the cusp amplitude, and the maximum value is approximately at ε=0.8 when the supersaturation is fixed. Moreover, the growth velocity is an increasing function of supersaturation with the morphological transition from facet to dendrite.
Keywords:  faceted growth      dendrite      phase-field model  
Received:  24 August 2021      Revised:  25 September 2021      Accepted manuscript online:  27 October 2021
PACS:  81.30.Fb (Solidification)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2001800), the National Natural Science Foundation of China (Grant No. 21978298), the Natural Science Foundation of Shaanxi Province in China (Grant No. 2020JM-111), Applied Basic Research Key Project of Yunnan, China (Grant No. 202002AB080001-1), and Henan Youth Talent Promotion Project, China (Grant No. 2020HYTP019).
Corresponding Authors:  Xianglei Dong     E-mail:

Cite this article: 

Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生) Phase-field modeling of faceted growth in solidification of alloys 2022 Chin. Phys. B 31 048104

[1] Fujiwara K, Pan W, Usami N, et al. 2006 Acta Mater. 54 3191
[2] Jackson K A 1984 Mater. Sci. Eng. 65 7
[3] Fujiwara K, Maeda K, Usami N, et al. 2008 Acta Mater. 56 2663
[4] Panofen C and Herlach D M 2007 Mat. Sci. Eng. A 449 669
[5] Yang X B, Fujiwara K, Maeda K, et al. 2011 Appl. Phys. Lett. 98 012113
[6] Battersby S E, Cochrane R F and Mullis A M 1997 Mater. Sci. Eng. A 226 443
[7] Kuang W, Wang H, Li X, et al. 2018 Acta Mater. 159 16
[8] Zhao Y, Zhang B, Hou H, et al. 2019 J. Mater. Sci. Tech. 35 1044
[9] Echebarria B, Folch R, Karma A, et al. 2004 Phys. Rev. E 70 061604
[10] Xing H, Dong X L, Sun D K, et al. 2020 J. Mater. Sci. Tech. 57 28
[11] Zhang J, Wang H, Kuang W, et al. 2018 Acta Mater. 148 86
[12] Debierre J M, Karma A, Celestini F, et al. 2003 Phys. Rev. E 68 041604
[13] Chen P, Tsai Y and Lan C 2008 Acta Mater. 56 4114
[14] Chen G, Lin H and Lan C 2016 Acta Mater. 115 324
[15] Wang N, Upmanyu M and Karma A 2018 Phys. Rev. Mater. 2 033402
[16] Bollada P, Jimack P and Mullis A 2018 Compu. Mater. Sci. 144 76
[17] Stefan-Kharicha M, Kharicha A, Zaidat K, et al. 2020 J. Crys. Growth 541 125667
[18] Karma A 2001 Phys. Rev. Lett. 87 115701
[19] Lin H, Chen H and Lan C 2014 J. Crys. Growth 385 44
[1] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[2] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
[3] Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(7): 078204.
[4] Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model
Tao Yang(杨 涛), Zheng Chen(陈铮), Jing Zhang(张静), Yongxin Wang(王永新), Yanli Lu(卢艳丽). Chin. Phys. B, 2016, 25(3): 038103.
[5] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[6] Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation
Yang Su-Dong (杨苏东), Chen Lin (陈琳). Chin. Phys. B, 2015, 24(11): 118104.
[7] Phase field crystal study of the crystallization modes within the two-phase region
Yang Tao (杨涛), Zhang Jing (张静), Long Jian (龙建), Long Qing-Hua (龙清华), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(8): 088109.
[8] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[9] Settling velocity of equiaxed dendrites in a tube
Zhou Peng (周鹏), Wang Meng (王猛), Lin Xin (林鑫), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2013, 22(1): 018101.
[10] Phase--field model of isothermal solidification with multiple grains growth
Feng Li(冯力), Wang Zhi-Ping(王智平), Zhu Chang-Sheng(朱昌盛), and Lu Yang(路阳). Chin. Phys. B, 2009, 18(5): 1985-1990.
[11] Solute distribution in KNbO3 melt-solution and its effect on dendrite growth during rapid solidification
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), and Ai Fei(艾飞). Chin. Phys. B, 2009, 18(2): 699-703.
[12] Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy
Li Jun-Jie(李俊杰), Wang Jin-Cheng(王锦程), and Yang Gen-Cang(杨根仓). Chin. Phys. B, 2008, 17(9): 3516-3522.
[13] Synthesis and characterization of axially periodic Zn2SnO4 dendritic nanostructures
Shen Jun(沈俊), Ge Bing-Hui(葛炳辉), Chu Wei-Guo(褚卫国), Luo Shu-Dong(罗述东), Zhang Zeng-Xing(张增星), Liu Dong-Fang(刘东方), Liu Li-Feng(刘利峰), Ma Wen-Jun(马文君), Ren Yan(任彦), Xiang Yan-Juan(向彦娟), Wang Chao-Ying(王超英), Wang Gang(王刚), and Zhou Wei-Ya(周维亚) . Chin. Phys. B, 2008, 17(6): 2184-2190.
[14] Phase-field simulation of dendritic growth in a binary alloy with thermodynamics data
Long Wen-Yuan(龙文元), Xia Chun(夏春), Xiong Bo-Wen(熊博文), and Fang Li-Gao(方立高) . Chin. Phys. B, 2008, 17(3): 1078-1083.
[15] Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process
Li Qiang (李强), Guo Qiao-Yi (郭巧懿), Li Rong-De (李荣德). Chin. Phys. B, 2006, 15(4): 778-791.
No Suggested Reading articles found!