Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080701    DOI: 10.1088/1674-1056/27/8/080701
GENERAL Prev   Next  

Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes

Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅)
School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
Abstract  Single or multiple S-boxes are widely used in image encryption schemes, and in many image encryption schemes the asynchronous encryption structure is utilized, which separates the processes of substitution and diffusion. In this paper, we analyze the defects of this structure based on the example of an article and crack it using a simpler method. To address the defects of the asynchronous encryption structure, a novel encryption scheme is proposed, in which the structure of synchronous substitution and diffusion based on double S-boxes is utilized, so the processes of substitution and diffusion are combined together and the attackers cannot crack the cryptosystem by any of the processes. The simulation results and security analysis show that the proposed encryption scheme is safer and more efficient to expediently use in the real-time system.
Keywords:  image encryption      S-box      crack      synchronous substitution and diffusion  
Received:  11 February 2018      Revised:  11 April 2018      Accepted manuscript online: 
PACS:  07.05.Pj (Image processing)  
  87.57.N- (Image analysis)  
  87.57.C- (Image quality)  
Fund: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM8322).
Corresponding Authors:  Jia-Yin Wang     E-mail:  wangjiayin@mail.xjtu.edu.cn

Cite this article: 

Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅) Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes 2018 Chin. Phys. B 27 080701

[1] Chen B, Geng Z X, SHEN J and Yang Y 2009 Chin. Phys. Lett. 26 040701
[2] Lu X W, Li J Z and Chen H Y 2010 Chin. Phys. Lett. 27 104209
[3] Feng T, Yuan J, Yu Y, Zhou Y and Xu G 2013 Chin. Phys. Lett. 30 100702
[4] Li X, Li C and Lee I 2016 Signal Process 125 48
[5] Wang X Y, Yang L, Liu R and Kadir A 2010 Nonlinear Dyn. 62 615
[6] Wang X Y, Liu L T, and Zhang Y Q 2015 Opt. Laser. Eng. 66 10
[7] Sun J L, Liao X F, Chen X and Guo S W 2017 Int. J. Bifurc. Chaos 27 1750073
[8] Li B, Liao X F and Jiang Y 2018 Multimed. Tools Appl. 77 8911
[9] Liu H J and Wang X Y 2010 Comput. Math. Appl. 59 3320
[10] Wang X Y and Teng L 2012 Chin. Phys. B 21 020504
[11] Liu H J and Wang X Y 2011 Opt. Commun. 284 3895
[12] Liu J Y, Yang D D, Zhou H B and Chen S H 2018 Multimed. Tools Appl. 77 10217
[13] Zhang Y Q and Wang X Y 2015 Appl. Soft Comput. 26 10
[14] Liu H J, Wang X Y and Kadir A 2012 Appl. Soft Comput. 12 1457
[15] Pujari S, Bhattacharjee G and Bhoi S 2018 Pro. Comp. Sci. 125 165
[16] Wang X Y, Zhang Y Q and Bao X M 2015 Opt. Laser Eng. 73 53
[17] Zhang D, Liao X F, Yang B and Zhang Y S 2018 Multimed. Tools Appl. 77 2191
[18] Yang B and Liao X F 2018 Multimed. Tools Appl. 77 2191
[19] Wu J H, Liao X F and Yang B 2017 Signal Process. 141 109
[20] Chai X L, Gan Z H, Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
[21] Ye G D, Huang X L, Zhang Y and Zheng X Y 2017 Chin. Phys. B 26 010501
[22] Parvaz R and Zarebnia M 2018 Opt. Laser Eng. 101 30
[23] Ullah A, Jamal S S and Shah T 2018 Nonlinear Dyn. 91 359
[24] Han F, Liao X F, Yang B and Zhang Y S 2018 Multimed Tools Appl. 77 14285
[25] Rehman U A, Liao X F, Kulsoom A and Ullah S 2016 Multimed. Tools Appl. 75 11241
[26] Liu Y, Tong X and Ma J 2016 Multimed. Tools Appl. 75 7739
[27] Ahmad J and Hwang S O 2015 Nonlinear Dyn. 82 1839
[28] Farwa S, Muhammad N, Shah T and Ahmad S 2017 3$d Research 8 26
[29] Tian Y and Lu Z 2017 AIP Advances 7 085008
[30] Zhang X P, Nie W G, Ma Y L and Tian Q Q 2017 Multimed. Tools Appl. 76 1
[31] Li M, Liu S, Niu L and Liu H 2016 Opt. Laser Tech. 86 33
[32] Wu J H, Liao X F and Yang B 2018 Signal Process. 142 292
[33] Zhang Y Q and Wang X Y 2014 Information Science 273 329
[34] Wang X and Wang Q 2014 Nonlinear Dyn. 75 567
[35] Hu G, Xiao D, Zhang Y and Xiang T 2017 Nonlinear Dyn. 87 1359
[36] Liu W, Sun K and Zhu C 2016 Opt. Laser. Eng. 84 26
[37] Pareek N, Patidar V and Sud K 2005 Commun. Nonlinear Sci. Num. Simul. 10 715
[38] Wang X Y, Teng L and Qin X 2012 Signal Process. 92 1101
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Implementation of an 8-bit bit-slice AES S-box with rapid single flux quantum circuits
Ruo-Ting Yang(杨若婷), Xin-Yi Xue(薛新伊), Shu-Cheng Yang(杨树澄), Xiao-Ping Gao(高小平), Jie Ren(任洁), Wei Yan(严伟), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(9): 098501.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[7] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[8] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[9] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[10] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[11] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[12] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[13] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[14] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[15] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
No Suggested Reading articles found!