CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers |
Lin-Ao Huang(黄林傲)1, Mei-Yu Wang(王梅雨)2, Peng Wang(王鹏)2,5, Yuan Yuan(袁源)1, Ruo-Bai Liu(刘若柏)1, Tian-Yu Liu(刘天宇)1, Yu Lu(卢羽)1, Jia-Rui Chen(陈家瑞)1, Lu-Jun Wei(魏陆军)3, Wei Zhang(张维)1, Biao You(游彪)1,5, Qing-Yu Xu(徐庆宇)4,†, and Jun Du(杜军)1,5,‡ |
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2 College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China; 3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; 4 School of Physics, Southeast University, Nanjing 211189, China; 5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract The realization of perpendicular magnetization and perpendicular exchange bias (PEB) in magnetic multilayers is important for the spintronic applications. NiO(t)/[Ni(4 nm)/Pt(1 nm)]2 multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO3 (001) substrates. Perpendicular magnetization can be achieved when t < 25 nm. Perpendicular magnetization originates from strong perpendicular magnetic anisotropy (PMA), mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers. The PMA energy constant decreases monotonically with increasing t, due to the weakening of Ni (001) orientation and a little degradation of the Ni-Pt interface. Furthermore, significant PEB can be observed though NiO layer has spin compensated (001) crystalline plane. The PEB field increases monotonically with increasing t, which is considered to result from the thickness dependent anisotropy of the NiO layer.
|
Received: 24 August 2021
Revised: 24 September 2021
Accepted manuscript online: 29 September 2021
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51971109, 51771053, 52001169, and 11874199), the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the Fundamental Research Funds for the Central University, China (Grant No. 2242020k30039), and the open research fund of Key Laboratory of MEMS of Ministry of Education, Southeast University. |
Corresponding Authors:
Qing-Yu Xu, Jun Du
E-mail: xuqingyu@seu.edu.cn;jdu@nju.edu.cn
|
Cite this article:
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军) Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers 2022 Chin. Phys. B 31 027506
|
[1] Nakayama M, Kai T, Shimomura N, Amano M, Kitagawa E, Nagase T, Yoshikawa M, Kishi T, Ikegawa S and Yoda H 2008 J. Appl. Phys. 103 07A710 [2] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210 [3] Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Sekiguchi Y and Osada Y 2002 J. Appl. Phys. 91 5246 [4] Parkin S and Yang S H 2015 Nat. Nanotechnol. 10 195 [5] Zhou W N, Seki T, Arai H, Imamura H and Takanashi K 2016 Phys. Rev. B 94 220401(R) [6] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [7] Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501 [8] Cubukcu M, Boulle O, Drouard M, Garello K, Avci C O, Miron I M, Langer J, Ocker B, Gambardella P and Gaudin G 2014 Appl. Phys. Lett. 104 042406 [9] Zeper W B, Greidanus F J A M, Carcia P F and Fincher C R 1989 J. Appl. Phys. 65 4971 [10] Nakajima N, Koide T, Shidara T, Miyauchi H, Fukutani H, Fujimori A, Iio K, Katayama T, Nyvlt M and Suzuki Y 1998 Phys. Rev. Lett. 81 5229 [11] Carcia P F, Meinhaldt A D and Suna A 1985 Appl. Phys. Lett. 47 178 [12] Carcia P F 1988 J. Appl. Phys. 63 5066 [13] Liu Y, Zhu K G, Zhong H C, Zhu Z Y, Yu T and Ma S D 2016 Chin. Phys. B 25 117805 [14] You L, Sousa R C, Bandiera S, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 172411 [15] Jungblut R, Johnson M T, Stegge J aan de, Reinders A and Broeder F J A den 1994 J. Appl. Phys. 75 6424 [16] Bochi G, Ballentine C A, Inglefield H E, Thompson C V and O'Handley R C 1996 Phys. Rev. B 53 R1729(R) [17] Seki T, Tsujikawa M, Ito K, Uchida K, Kurebayashi H, Shirai M and Takanashi K 2020 Phys. Rev. Mater. 4 064413 [18] Seki T, Sakuraba Y, Masuda K, Miura A, Tsujikawa M, Uchida K, Kubota T, Miura Y, Shirai M and Takanashi K 2021 Phys. Rev. B 103 L020402 [19] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413 [20] Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203 [21] Shiratsuchi Y, Noutomi H, Oikawa H, Nakamura T, Suzuki M, Fujita T, Arakawa K, Takechi Y, Mori H, Kinoshita T, Yamamoto M and Nakatani R 2012 Phys. Rev. Lett. 109 077202 [22] Lin L, Thiyagarajah N, Joo H W, Heo J, Lee K A and Bae S 2010 Appl. Phys. Lett. 97 242514 [23] Sort J, Baltz V, Garcia F, Rodmacq B and Dieny B 2005 Phys. Rev. B 71 054411 [24] Liu Y F, Cai J W and He S L 2009 J. Phys. D:Appl. Phys. 42 115002 [25] Barton P T, Premchand Y D, Chater P A, Seshadri R and Rosseinsky M J 2013 Chem. Eur. J. 19 14521 [26] Baldrati L, Ross A, Niizeki T, Schneider C, Ramos R, Cramer J, Gomonay O, Filianina M, Savchenko T, Heinze D, Kleibert A, Saitoh E, Sinova J and Kläui M 2018 Phys. Rev. B 98 024422 [27] Hashim I, Park B and Atwater H A 1993 Appl. Phys. Lett. 63 2833 [28] Koch R 1994 J. Phys.:Condens. Matter 6 9519 [29] Pateras A, Harder R, Manna S, Kiefer B, Sandberg R L, Trugman S, Kim J W, Venta J de la, Fullerton E E, Shpyrko O G and Fohtung E 2019 NPG Asia Mater. 11 59 [30] Tan Y Y, Liang K, Mei Z H, Zhou P, Liu Y, Qi Y J, Ma Z J and Zhang T J 2018 Ceram. Int. 44 5564 [31] Luches P, Benedetti S, Bona A and Valeri S 2010 Phys. Rev. B 81 054431 [32] Zhang Y J, Chen J H, Li L L, Ma J, Nan C W and Lin Y H 2017 Phys. Rev. B 95 174420 [33] Hochstrat A, Binek C and Kleemann W 2002 Phys. Rev. B 66 092409 [34] Dubourg S, Bobo J F, Warot B, Snoeck E and Ousset J C 2005 Eur. Phys. J. B 45 175 [35] Malozemoff A P 1987 Phys. Rev. B 35 3679 [36] Liu Z Y and Adenwalla S 2003 Appl. Phys. Lett. 82 2106 [37] Driel J, Boer F R, Lenssen K M H and Coehoorn R 2000 J. Appl. Phys. 88 975 [38] Ali M, Marrows C H, Al-Jawad M, Hickey B J, Misra A, Nowak U and Usadel K D 2003 Phys. Rev. B 68 214420 [39] Rodríguez-Suárez R L, Vilela-Leão L H, Bueno T, Oliveira A B, Almeida J R L, Landeros P, Rezende S M and Azevedo A 2011 Phys. Rev. B 83 224418 [40] McCord J and Schäfer R 2009 New J. Phys. 11 083016 [41] Negulescu B, Thomas L, Dumont Y, Tessier M, Keller N and Guyot M 2002 J. Magn. Magn. Mater. 242 529 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|