Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020201    DOI: 10.1088/1674-1056/ac1e0b
GENERAL   Next  

Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation

Wenjie Yang(杨文杰)
School of Science, Xuchang University, Xuchang 461000, China
Abstract  Rank-1 attractors play a vital role in biological systems and the circuit systems. In this paper, we consider a periodically kicked Chua model with two delays in a circuit system. We first analyze the local stability of the equilibria of the Chua system and obtain the existence conditions of supercritical Hopf bifurcations. Then, we derive some explicit formulas about Hopf bifurcation, which could help us find the form of Hopf bifurcation and the stability of bifurcating period solutions through the Hassards method. Also, we show that rank-1 chaos occurs when the Chua model with two delays undergoes a supercritical Hopf bifurcation and encounters a periodic kick, which shows the effect of two delays on the circuit system. Finally, we illustrate the theoretical analysis by simulations and try to explain the mechanism of delay in our system.
Keywords:  rank one chaos      periodically kicked Chua model      time delay  
Received:  04 April 2021      Revised:  27 July 2021      Accepted manuscript online:  17 August 2021
PACS:  02.30.–f  
  02.30.Ks (Delay and functional equations)  
  02.30.Oz (Bifurcation theory)  
  02.30.Sa (Functional analysis)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11772291 and 12002297), Youth Talent Support Project of Henan, China (Grant No. 2020HYTP012), Basic Research Project of Universities in Henan Province, China (Grant No. 21zx009), Program for Science& Technology Innovation Talents in Universities of Henan Province, China (Grant No. 22HASTIT018).
Corresponding Authors:  Wenjie Yang     E-mail:  ywjwm123@foxmail.com

Cite this article: 

Wenjie Yang(杨文杰) Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation 2022 Chin. Phys. B 31 020201

[1] Zhang W, Wang F X and Yao M H 2005 Nonlinear Dyn. 40 251
[2] Yao M H, Zhang W and Zu W J 2012 J. Sound Vib. 331 2624
[3] Wei Z C, Zhang W and Yao M H 2015 Nonlinear Dyn. 82 1251
[4] Wei Z C, Zhang W, Wang Z and Yao M H 2015 Int. J. Bifur. Chaos 25 1550028
[5] Wei Z C, Yu P, Zhang W and Yao M H 2015 Nonlinear Dyn. 82 131
[6] Wei Z C and Zhang W 2014 Int. J. Bifur. Chaos 24 1450127
[7] Wei Z C, Moroz I, Sprott J C, Wang Z and Zhang W 2017 Int. J. Bifur. Chaos 27 1730008
[8] Wei Z C, Moroz I, Sprott, J C, Akgul A and Zhang W 2017 Chaos 27 033101
[9] Wang Q D and Young L S 2001 Commun. Math. Phys. 218 1
[10] Wang Q D and Young L S 2008 Ann. Math. 167 349
[11] Chen F J and Han M A 2009 Chaos 19 043122
[12] Yang W J, Lin Y P, Dai Y X and Jia Y S 2015 Adv. Diff. Equ. 1 75
[13] Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circuits Systems 33 1072
[14] Yalcin M E, Suykens J A K and Vandewalle J 2004 IEEE Trans. Circuits Systems-I:Regular Papers 51 1395
[15] Tsafack N and Kengne J 2019 World J. Appl. Phys. 4 24
[16] Ozkaynak F 2020 Elektronika Ir Elektrotechnika 26 52
[17] Yu P and Xu F 2006 Int. J. Bifur. Chaos 16 3727
[18] Zheng Q Q, Shen J W and Xu Y 2020 Phys. Rev. E 102062215
[19] Zheng Q Q and Shen J W 2020 Appl. Math. Comput. 381 125304
[20] Wang Q D and Oksasoglu A 2005 Int. J. Bifur. Chaos 15 83
[21] Wang Q D and Oksasoglu A 2008 Int. J. Bifur. Chaos 185 1261
[22] Guckenheimer J and Holmes P 1997 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, 5nd edn (New York:Springer-Verlag Press)
[23] Ruan S G and Wei J J 2003 Dynamics of Continuous, Discrete and Impulsive Systems, Series A:Mathematical Analysis 10 863
[24] Hassard B D, Kazarinoff N D and Wan Y H 1981 Theory and Applications of Hopf Bifurcation (New York:Cambridge University Press)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[6] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[9] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[10] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[11] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[12] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[13] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[14] Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling
Zeng-Qiang Yang(杨增强), Di-Fa Ye(叶地发), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(1): 013301.
[15] Effects of time delays in a mathematical bone model
Li-Fang Wang(王莉芳), Kang Qiu(仇康), Ya Jia(贾亚). Chin. Phys. B, 2017, 26(3): 030503.
No Suggested Reading articles found!