Abstract In recent years, there is a strong interest in thermal cloaking at the nanoscale, which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical macroscopic thermal cloak model. Silicon carbide, as a representative of the third-generation semiconductor material, has splendid properties, such as the high thermal conductivity and the high wear resistance. Therefore, in the present study, we build a nanoscale thermal cloak based on silicon carbide. The cloaking performance and the perturbation of the functional area to the external temperature filed are analyzed by the ratio of thermal cloaking and the response temperature, respectively. It is demonstrated that silicon carbide can also be used to build the nanoscale thermal cloak. Besides, we explore the influence of inner and outer radius on cloaking performance. Finally, the potential mechanism of the designed nanoscale thermal cloak is investigated by calculating and analyzing the phonon density of states (PDOS) and mode participation rate (MPR) within the structure. We find that the main reason for the decrease in the thermal conductivity of the functional area is phonon localization. This study extends the preparation method of nanoscale thermal cloaks and can provide a reference for the development of other nanoscale devices.
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依) Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film 2022 Chin. Phys. B 31 014402
[1] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett.92 251907 [2] Dang Minh N, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett.107 121901 [3] Han T C, Bai X, Gao D L, Thong John T L, Li B W and Qiu C W 2014 Phys. Rev. Lett.112 054302 [4] Yang S, Wang J, Dai G, Yang F and Huang J P 2021 Phys. Rep.908 1 [5] Hou Q W, Li J C and Zhao X P 2021 Chin. Phys. Lett.38 010503 [6] Shen X Y, Li Y, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett.109 031907 [7] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett.112 054301 [8] Xu L J and Huang J P 2020 Chin. Phys. Lett.37 120501 [9] Zhou L L, Huang S Y, Wang M, Hu R and Luo X B 2019 Phys. Lett. A383 759 [10] Gao Y 2021 Chin. Phys. Lett.38 020501 [11] Hu R, Wei X L, Hu J Y and Luo X B 2014 Sci. Rep.4 3600 [12] Li Y Y and Zhang H C 2020 Chin. Phys. B29 084401 [13] Alwakil A, Zerrad M, Bellieud M and Amra C 2017 Sci. Rep.7 43288 [14] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater.30 1707237 [15] Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer127 607 [16] Zhu N Q, Shen X Y and Huang J P 2015 AIP Adv.5 053401 [17] Han T C, Bai X, Thong John T L, Li B W and Qiu C W 2014 Adv. Mater.26 1731 [18] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun.9 273 [19] Liu Y D, Song J L, Zhao W X, Ren X C, Cheng Q, Luo X B, Fang N X and Hu R 2020 Nanophotonics9 855 [20] Zhang J W, Huang S Y and Hu R 2021 Chin. Phys. Lett.38 010502 [21] Wang J, Bi Y Q and Hou Q W 2017 Sci. Rep.7 7541 [22] Xu L J, Wang R Z and Huang J P 2018 J. Appl. Phys.123 245111 [23] Yang T Z, Su Y S, Xu W K and Yang X D 2016 Appl. Phys. Lett.109 121905 [24] Guenneau S and Amra C 2013 Opt. Express21 6578 [25] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett.115 195503 [26] Li Y and Li J X 2021 Chin. Phys. Lett.38 030501 [27] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science314 1121 [28] Hu J N, Ruan X L and Chen Y P 2012 Int. J. Thermophys.33 986 [29] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Sci. Rep.2 523 [30] Qin T, Zhou J H and Shi J R 2012 Phys. Rev. B86 104305 [31] Toyin O R, Ge W X and Gao L 2021 Chin. Phys. Lett.38 016801 [32] Ye Z Q and Cao B Y 2016 Phys. Chem. Chem. Phys.18 32952 [33] Liu Y D, Cheng Y H, Hu R and Luo X B 2019 Phys. Lett. A383 2296 [34] Choe HS, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P D, Qiu C W, Dames C, Scott M, Minor A, Bahk J H and Wu J Q 2019 Nano Lett.19 3830 [35] Plimpton S 1995 J. Comput. Phys.117 1 [36] Tersoff 1989 Phys. Rev. B39 5566 [37] Berendsen H J C, Postma J P M, Gunsteren W F van, DiNola A and Haak J R 1984 J. Chem. Phys.81 3684 [38] Chen X K, Hu J W, Wu X J, Jia P, Peng Z H and Chen K Q 2018 J. Phys. D: Appl. Phys.51 085103 [39] Islam A S M J, Islam M S, Ferdousi N, Park J, Bhuiyan A G and Hashimoto A 2019 Nanotechnology30 445707 [40] Norouzzadeh P, Myles C W and Vashaee D 2017 Phys. Rev. B95 195206 [41] Liang T, Zhou M, Zhang P, Yuan P and Yang D G 2020 Int. J. Heat Mass Transfer151 119395 [42] Ma D K, Ding H R, Meng H, Feng L, Wu Y, Shiomi J and Yang N 2016 Phys. Rev. B94 165434
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.