Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014402    DOI: 10.1088/1674-1056/ac2809
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film

Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依)
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  In recent years, there is a strong interest in thermal cloaking at the nanoscale, which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical macroscopic thermal cloak model. Silicon carbide, as a representative of the third-generation semiconductor material, has splendid properties, such as the high thermal conductivity and the high wear resistance. Therefore, in the present study, we build a nanoscale thermal cloak based on silicon carbide. The cloaking performance and the perturbation of the functional area to the external temperature filed are analyzed by the ratio of thermal cloaking and the response temperature, respectively. It is demonstrated that silicon carbide can also be used to build the nanoscale thermal cloak. Besides, we explore the influence of inner and outer radius on cloaking performance. Finally, the potential mechanism of the designed nanoscale thermal cloak is investigated by calculating and analyzing the phonon density of states (PDOS) and mode participation rate (MPR) within the structure. We find that the main reason for the decrease in the thermal conductivity of the functional area is phonon localization. This study extends the preparation method of nanoscale thermal cloaks and can provide a reference for the development of other nanoscale devices.
Keywords:  nanoscale thermal cloak      silicon carbide      molecular dynamics      in-situ annealing  
Received:  19 July 2021      Revised:  19 August 2021      Accepted manuscript online:  18 September 2021
PACS:  44.10.+i (Heat conduction)  
  65.40.-b (Thermal properties of crystalline solids)  
  67.25.dp (Films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51776050).
Corresponding Authors:  Hao-Chun Zhang     E-mail:  hczhang@hit.edu.cn

Cite this article: 

Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依) Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film 2022 Chin. Phys. B 31 014402

[1] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[2] Dang Minh N, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett. 107 121901
[3] Han T C, Bai X, Gao D L, Thong John T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[4] Yang S, Wang J, Dai G, Yang F and Huang J P 2021 Phys. Rep. 908 1
[5] Hou Q W, Li J C and Zhao X P 2021 Chin. Phys. Lett. 38 010503
[6] Shen X Y, Li Y, Jiang C R, Ni Y S and Huang J P 2016 Appl. Phys. Lett. 109 031907
[7] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[8] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[9] Zhou L L, Huang S Y, Wang M, Hu R and Luo X B 2019 Phys. Lett. A 383 759
[10] Gao Y 2021 Chin. Phys. Lett. 38 020501
[11] Hu R, Wei X L, Hu J Y and Luo X B 2014 Sci. Rep. 4 3600
[12] Li Y Y and Zhang H C 2020 Chin. Phys. B 29 084401
[13] Alwakil A, Zerrad M, Bellieud M and Amra C 2017 Sci. Rep. 7 43288
[14] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
[15] Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
[16] Zhu N Q, Shen X Y and Huang J P 2015 AIP Adv. 5 053401
[17] Han T C, Bai X, Thong John T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[18] Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273
[19] Liu Y D, Song J L, Zhao W X, Ren X C, Cheng Q, Luo X B, Fang N X and Hu R 2020 Nanophotonics 9 855
[20] Zhang J W, Huang S Y and Hu R 2021 Chin. Phys. Lett. 38 010502
[21] Wang J, Bi Y Q and Hou Q W 2017 Sci. Rep. 7 7541
[22] Xu L J, Wang R Z and Huang J P 2018 J. Appl. Phys. 123 245111
[23] Yang T Z, Su Y S, Xu W K and Yang X D 2016 Appl. Phys. Lett. 109 121905
[24] Guenneau S and Amra C 2013 Opt. Express 21 6578
[25] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S and Huang J P 2015 Phys. Rev. Lett. 115 195503
[26] Li Y and Li J X 2021 Chin. Phys. Lett. 38 030501
[27] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[28] Hu J N, Ruan X L and Chen Y P 2012 Int. J. Thermophys. 33 986
[29] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Sci. Rep. 2 523
[30] Qin T, Zhou J H and Shi J R 2012 Phys. Rev. B 86 104305
[31] Toyin O R, Ge W X and Gao L 2021 Chin. Phys. Lett. 38 016801
[32] Ye Z Q and Cao B Y 2016 Phys. Chem. Chem. Phys. 18 32952
[33] Liu Y D, Cheng Y H, Hu R and Luo X B 2019 Phys. Lett. A 383 2296
[34] Choe HS, Prabhakar R, Wehmeyer G, Allen F I, Lee W, Jin L, Li Y, Yang P D, Qiu C W, Dames C, Scott M, Minor A, Bahk J H and Wu J Q 2019 Nano Lett. 19 3830
[35] Plimpton S 1995 J. Comput. Phys. 117 1
[36] Tersoff 1989 Phys. Rev. B 39 5566
[37] Berendsen H J C, Postma J P M, Gunsteren W F van, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[38] Chen X K, Hu J W, Wu X J, Jia P, Peng Z H and Chen K Q 2018 J. Phys. D: Appl. Phys. 51 085103
[39] Islam A S M J, Islam M S, Ferdousi N, Park J, Bhuiyan A G and Hashimoto A 2019 Nanotechnology 30 445707
[40] Norouzzadeh P, Myles C W and Vashaee D 2017 Phys. Rev. B 95 195206
[41] Liang T, Zhou M, Zhang P, Yuan P and Yang D G 2020 Int. J. Heat Mass Transfer 151 119395
[42] Ma D K, Ding H R, Meng H, Feng L, Wu Y, Shiomi J and Yang N 2016 Phys. Rev. B 94 165434
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[9] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[10] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[11] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[12] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[13] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[14] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[15] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
No Suggested Reading articles found!