Abstract The characteristic clogging structures of granular spheres blocking three-dimensional granular flow through hopper outlet are analyzed based on packing structures reconstructed using magnetic resonance imaging techniques. Spheres in clogging structures are arranged in a way with typical features of load-bearing, such as more contacting bonds close to the horizontal plane and more mutually-stabilized contact configurations than packing structures away from the orifice. The requirement of load-bearing inevitably leads to the cooperativity of clogging structures with a correlation length of several particle diameters. This correlation length being comparable with the orifice diameter suggests that a clogging structure is composed of several mutually-stabilized structural motifs to span the orifice perimeter, instead of a collection of independent individual spheres to cover the whole orifice area. Accordingly, we propose a simple geometric model to explain the unexpected linear dependence of the average size of three-dimensional clogging structures on orifice diameter.
Fund: Project supported by the China Postdoctoral Science Foundation (Grant Nos. 2018M641957 and 2019T120319), the National Natural Science Foundation of China (Grant No. 11904102), and the Fundamental Research Funds for the Central Universities, China.
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰) Three-dimensional clogging structures of granular spheres near hopper orifice 2022 Chin. Phys. B 31 014501
[1] de Gennes P G 1999 Rev. Mod. Phys.71 S374 [2] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys.68 1259 [3] Liu A J and Nagel S R 1998 Nature396 21 [4] Majmudar T S, Sperl M, Luding S and Behringer R P 2007 Phys. Rev. Lett.98 058001 [5] Liu A J and Nagel S R 2010 Annu. Rev. Conden. Matter Phys.1 347 [6] Zuriguel I 2014 Pap. Phys.6 060014 [7] van de Laar T, ten Klooster S, Schroen K and Sprakel J 2016 Sci. Rep.6 28450 [8] Stoop R L and Tierno P 2018 Commun. Phys.1 68 [9] Garcimartin A, Pastor J M, Ferrer L M, Ramos J J, Martin-Gomez C and Zuriguel I 2015 Phys. Rev. E91 022808 [10] Patterson G A, Fierens P I, Jimka F S, Konig P G, Garcimartin A, Zuriguel I, Pugnaloni L A and Parisi D R 2017 Phys. Rev. Lett.119 248301 [11] Mohammadi M, Harth K, Puzyrev D, Hanselka T, Trittel T and Stannarius R 2020 New J. Phys.22 123025 [12] Delarue M, Hartung J, Schreck C, Gniewek P, Hu L, Herminghaus S and Hallatschek O 2016 Nat. Phys.12 762 [13] Gella D, Maza D, Zuriguel I, Ashour A, Arevalo R and Stannarius R 2017 Phys. Rev. Fluids2 084304 [14] Lopez-Rodriguez D, Gella D, To K, Maza D, Garcimartin A and Zuriguel I 2019 Phys. Rev. E99 032901 [15] Thomas C C and Durian D J 2013 Phys. Rev. E87 052201 [16] Pournin L, Ramaioli M, Folly P and Liebling T M 2007 Euro. Phys. J. E23 229 [17] Goldberg E, Carlevaro C M and Pugnaloni L A 2018 J. Stat. Mech.2018 113201 [18] Mankoc C, Garcimartin A, Zuriguel I, Maza D and Pugnaloni L A 2009 Phys. Rev. E80 011309 [19] Aguirre M A, Grande J G, Calvo A, Pugnaloni L A and Geminard J C 2010 Phys. Rev. Lett.104 238002 [20] Dorbolo S, Maquet L, Brandenbourger M, Ludewig F, Lumay G, Caps H, Vandewalle N, Rondia S, Melard M, van Loon J, Dowson A and Vincent-Bonnieu S 2013 Granular Matter15 263 [21] Arevalo R, Zuriguel I, Maza D and Garcimartin A 2014 Phys. Rev. E89 042205 [22] Gella D, Zuriguel I and Maza D 2018 Phys. Rev. Lett.121 138001 [23] To K, Lai P Y and Pak H K 2001 Phys. Rev. Lett.86 71 [24] To K W and Lai P Y 2002 Phys. Rev. E66 011308 [25] Lozano C, Lumay G, Zuriguel I, Hidalgo R C and Garcimartin A 2012 Phys. Rev. Lett.109 068001 [26] Nicolas A, Garcimartin A and Zuriguel I 2018 Phys. Rev. Lett.120 198002 [27] Merrigan C, Birwa S K, Tewari S and Chakraborty B 2018 Phys. Rev. E97 040901 [28] Guerrero B V, Pugnaloni L A, Lozano C, Zuriguel I and Garcimartin A 2018 Phys. Rev. E97 042904 [29] Guerrero B V, Chakraborty B, Zuriguel I and Garcimartin A 2019 Phys. Rev. E100 032901 [30] Borzsonyi T, Somfai E, Szabo B, Wegner S, Mier P, Rose G and Stannarius R 2016 New J. Phys.18 093017 [31] Ashour A, Wegner S, Trittel T, Borzsonyi T and Stannarius R 2017 Soft Matter13 402 [32] Zuriguel I, Parisi D R, Hidalgo R C, Lozano C, Janda A, Gago P A, Peralta J P, Ferrer L M, Pugnaloni L A, Clement E, Maza D, Pagonabarraga I and Garcimartin A 2014 Sci. Rep.4 7324 [33] To K W. 2005 Phys. Rev. E71 060301 [34] Zuriguel I, Garcimartin A, Maza D, Pugnaloni L A and Pastor J M 2005 Phys. Rev. E71 051303 [35] Janda A, Zuriguel I, Garcimartin A, Pugnaloni L A and Maza D 2008 Europhys. Lett.84 44002 [36] Thomas C C and Durian D J 2015 Phys. Rev. Lett.114 178001 [37] Cross R 2020 Phys. Educ.55 055013 [38] Frahm J, Haase A and Matthaei D 1986 J. Comp. Ass. Tomo.10 363 [39] Griswold M A, Jakob P M, Heidemann R M, Nittka M, Jellus V, Wang J M, Kiefer B and Haase A 2002 Magn. Reson. Med.47 1202 [40] Aste T, Saadatfar M and Senden T J 2005 Phys. Rev. E71 061302 [41] Garcimartin A, Zuriguel I, Pugnaloni L A and Janda A 2010 Phys. Rev. E82 031306 [42] Longjas A, Monterola C and Saloma C 2009 J. Stat. Mech.2009 P05006 [43] Zhou J and Dinsmore A D 2009 J. Stat. Mech.2009 L05001 [44] Junyao T, Sagdiphour S and Behringer R P 2009 AIP Conf. Proc.1145 515 [45] Mehta A, Barker G C and Luck J M 2004 J. Stat. Mech.2004 P10014 [46] Jenkins M C, Haw M D, Barker G C, Poon W C K and Egelhaaf S U 2011 Soft Matter7 684 [47] Majmudar T S and Behringer R P 2005 Nature435 1079
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.