Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037202    DOI: 10.1088/1674-1056/24/3/037202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin and valley filter in strain engineered silicene

Wang Sa-Ke (汪萨克), Wang Jun (汪军)
Department of Physics, Southeast University, Nanjing 210096, China
Abstract  The realization of a perfect spin or valley filtering effect in two-dimensional graphene-like materials is one of the fundamental objectives in spintronics and valleytronics. For this purpose, we study spin- and valley-dependent transport in a silicene system with spatially alternative strains. It is found that due to the valley-opposite gauge field induced by the strain, the strained silicene with a superlattice structure exhibits an angle-resolved valley and spin filtering effect when the spin-orbit interaction is considered. When the interaction that breaks the time reversal symmetry is introduced, such as the spin or valley dependent staggered magnetization, the system is shown to be a perfect spin and valley half metal in which only one spin and valley species is allowed to transport. Our findings are helpful to design both spintronic and valleytronic devices based on silicene.
Keywords:  spin filtering effect      valley filtering effect      transmission      valleytronics  
Received:  01 September 2014      Revised:  01 November 2014      Accepted manuscript online: 
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Corresponding Authors:  Wang Jun     E-mail:  jwang@seu.edu.cn

Cite this article: 

Wang Sa-Ke (汪萨克), Wang Jun (汪军) Spin and valley filter in strain engineered silicene 2015 Chin. Phys. B 24 037202

[1] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[2] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[3] Motohiko E 2012 New J. Phys. 14 033003
[4] Yokoyama T 2013 Phys. Rev. B 87 241409
[5] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[6] Pesin D and MacDonald A H 2012 Nat. Mater. 11 409
[7] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[8] Grujić M M, Tadić M Ž and Peeters F M 2014 Phys. Rev. Lett. 113 046601
[9] Moldovan D, Ramezani Masir M, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115431
[10] Song Y, Zhai F and Guo Y 2013 Appl. Phys. Lett. 103 183111
[11] Zhang L and Wang J 2014 Chin. Phys. B 23 087202
[12] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[13] Sasaki K I and Saito R 2008 Prog. Theor. Phys. Supp. 176 253
[14] Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
[15] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508
[16] Chaves A, Covaci L, Rakhimov K Y, Farias G A and Peeters F M 2010 Phys. Rev. B 82 205430
[17] Niu Z P 2012 J. Appl. Phys. 111 103712
[18] Yu T, Ni Z H, Du C L, You Y M, Wang Y Y and Shen Z X 2008 J. Phys. Chem. C 112 12602
[19] Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C and Lau C N 2009 Nat. Nano. 4 562
[20] Wang J and Fischer S 2014 Phys. Rev. B 89 245421
[21] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[3] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[6] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[7] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[8] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[9] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[10] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[11] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[12] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[13] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[14] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[15] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
No Suggested Reading articles found!