ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains |
Tianqi Luo(罗天琦)1,2, Xin Guan(关欣)3,†, Jingtao Fan(樊景涛)1,2,‡, Gang Chen(陈刚)1,2,4, and Suo-Tang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 Taiyuan Institute, Taiyuan University, Taiyuan 030006, China; 4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Topological quantum states have attracted great attention both theoretically and experimentally. Here, we show that the momentum-space lattice allows us to couple two Su-Schrieffer-Heeger (SSH) chains with opposite dimerizations and staggered interleg hoppings. The coupled SSH chain is a four-band model which has sublattice symmetry similar to the SSH4. Interestingly, the topological edge states occupy two sublattices at the same time, which can be regarded as a one-dimension analogue of the type-II corner state. The analytical expressions of the edge states are also obtained by solving the eigenequations. Finally, we provide a possible experimental scheme to detect the topological winding number and corresponding edge states.
|
Received: 15 September 2021
Revised: 01 November 2021
Accepted manuscript online: 04 November 2021
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
71.23.An
|
(Theories and models; localized states)
|
|
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074232, and 11804204) and 1331KSC. |
Corresponding Authors:
Xin Guan, Jingtao Fan
E-mail: guanxin810712@163.com;bkxyfjt@163.com
|
Cite this article:
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂) Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains 2022 Chin. Phys. B 31 014208
|
[1] Von Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [2] Thouless D J, Kohmoto M, Nightingale M P and Dennijs M 1982 Phys. Rev. Lett. 49 405 [3] Simon B 1983 Phys. Rev. Lett. 51 2167 [4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [6] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [7] Bernevig B A and Hughes T L Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) [8] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [9] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [10] Bzdušek T, Wu Q, Rüegg A, Sigrist M and Soluyanov A A 2016 Nature 538 75 [11] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 [12] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126 [13] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61 [14] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115 [15] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346 [16] Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501 [17] Mondragon-Shem I, Hughes T L, Song J and Prodan E 2014 Phys. Rev. Lett. 113 046802 [18] Yang Y B, Li K, Duan L M and Xu Y 2021 Phys. Rev. B 103 085408 [19] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [20] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802 [21] Zhang K, Yang Z S and Fang Chen 2020 Phys. Rev. Lett. 125 126402 [22] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801 [23] Goldman N, Satija I, Nikolic P, Bermudez A, MartinDelgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302 [24] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 7526 [25] Junemann J, Piga A, Ran S J, Lewenstein M, Rizzi M and Bermudez A 2017 Phys. Rev. X 7 031057 [26] Konig M, Wiedmann S, Brune C, et al. 2007 Science 318 5851 [27] Ueda K, Fujioka J, Takahashi Y, et al. 2012 Phys. Rev. Lett. 109 136402 [28] Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H and Chen Y F 2018 Phys. Rev. B 98 205147 [29] Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A and Hafezi M 2019 Nat. Photon. 13 692 [30] Ni X, Weiner M, Alù A and Khanikaev A B 2019 Nat. Mater. 18 113 [31] Wei Q, Zhang X, Deng W, Lu J, Huang X, Yan M, Chen G, Liu Z and Jia S 2021 Nat. Mater. 20 812 [32] Yang Z Z, Chen J H, Peng Y Y, et al. 2020 Chin. Phys. B 29 104302 [33] Pei D L, Yang T, Chen M, et al. 2019 Chin. Phys. B 28 124301 [34] Guo B, Shi K G, Qin H L, et al. 2020 Chin. Phys. B 29 097403 [35] Roushan P, Neill C, Chen Y, Kolodrubetz M, et al. 2014 Nature 515 241 [36] Cai W, Han J, Mei F, et al. 2019 Phys. Rev. Lett. 123 080501 [37] Wang D W, Liu R B, Zhu S Y and Scully M O 2015 Phys. Rev. Lett. 114 043602 [38] Gadway B 2015 Phys. Rev. A 92 043606 [39] Chen L, Wang P, Meng Z, Huang L, Cai H, Wang D W, Zhu S Y and Zhang J 2018 Phys. Rev. Lett. 120 193601 [40] Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X and Wang D W 2019 Phys. Rev. Lett. 122 023601 [41] He Y Y, Mao R S, Cai H, Zhang J X, Li Y Q, Yuan L Q, Zhu S Y and Wang D W 2021 Phys. Rev. Lett. 126 103601 [42] Scully M O, Fry E S, Ooi C H and Wdkiewicz K 2006 Phys. Rev. Lett. 96 010501 [43] An Fangzhao Alex, Meier E J and Gadway Bryce 2017 Sci. Adv. 3 e1602685 [44] Meier E J, et al. 2018 Science 362 929 [45] Xie D, Gou W, Xiao T, et al. 2019 npj Quantum Inf. 5 55 [46] Li L, Umer M and Gong J 2018 Phys. Rev. B 98 205422 [47] Li C, Li S, Zhang G and Song Z 2017 Phys. Rev. B 96 125418 [48] Zhang S L and Zhou Q 2017 Phys. Rev. A 95 061601(R) [49] Maffei Maria, et al. 2018 New J. Phys. 20 013023 [50] Cardano F, et al. 2017 Nat. Comm. 8 15516 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|