Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014208    DOI: 10.1088/1674-1056/ac3650
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains

Tianqi Luo(罗天琦)1,2, Xin Guan(关欣)3,†, Jingtao Fan(樊景涛)1,2,‡, Gang Chen(陈刚)1,2,4, and Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Taiyuan Institute, Taiyuan University, Taiyuan 030006, China;
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  Topological quantum states have attracted great attention both theoretically and experimentally. Here, we show that the momentum-space lattice allows us to couple two Su-Schrieffer-Heeger (SSH) chains with opposite dimerizations and staggered interleg hoppings. The coupled SSH chain is a four-band model which has sublattice symmetry similar to the SSH4. Interestingly, the topological edge states occupy two sublattices at the same time, which can be regarded as a one-dimension analogue of the type-II corner state. The analytical expressions of the edge states are also obtained by solving the eigenequations. Finally, we provide a possible experimental scheme to detect the topological winding number and corresponding edge states.
Keywords:  topological quantum states      edge state      momentum-space lattice  
Received:  15 September 2021      Revised:  01 November 2021      Accepted manuscript online:  04 November 2021
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  71.23.An (Theories and models; localized states)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074232, and 11804204) and 1331KSC.
Corresponding Authors:  Xin Guan, Jingtao Fan     E-mail:  guanxin810712@163.com;bkxyfjt@163.com

Cite this article: 

Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂) Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains 2022 Chin. Phys. B 31 014208

[1] Von Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Thouless D J, Kohmoto M, Nightingale M P and Dennijs M 1982 Phys. Rev. Lett. 49 405
[3] Simon B 1983 Phys. Rev. Lett. 51 2167
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[7] Bernevig B A and Hughes T L Topological Insulators and Topological Superconductors (Princeton: Princeton University Press)
[8] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[9] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[10] Bzdušek T, Wu Q, Rüegg A, Sigrist M and Soluyanov A A 2016 Nature 538 75
[11] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[12] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[13] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61
[14] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[15] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[16] Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501
[17] Mondragon-Shem I, Hughes T L, Song J and Prodan E 2014 Phys. Rev. Lett. 113 046802
[18] Yang Y B, Li K, Duan L M and Xu Y 2021 Phys. Rev. B 103 085408
[19] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[20] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[21] Zhang K, Yang Z S and Fang Chen 2020 Phys. Rev. Lett. 125 126402
[22] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[23] Goldman N, Satija I, Nikolic P, Bermudez A, MartinDelgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302
[24] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 7526
[25] Junemann J, Piga A, Ran S J, Lewenstein M, Rizzi M and Bermudez A 2017 Phys. Rev. X 7 031057
[26] Konig M, Wiedmann S, Brune C, et al. 2007 Science 318 5851
[27] Ueda K, Fujioka J, Takahashi Y, et al. 2012 Phys. Rev. Lett. 109 136402
[28] Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H and Chen Y F 2018 Phys. Rev. B 98 205147
[29] Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A and Hafezi M 2019 Nat. Photon. 13 692
[30] Ni X, Weiner M, Alù A and Khanikaev A B 2019 Nat. Mater. 18 113
[31] Wei Q, Zhang X, Deng W, Lu J, Huang X, Yan M, Chen G, Liu Z and Jia S 2021 Nat. Mater. 20 812
[32] Yang Z Z, Chen J H, Peng Y Y, et al. 2020 Chin. Phys. B 29 104302
[33] Pei D L, Yang T, Chen M, et al. 2019 Chin. Phys. B 28 124301
[34] Guo B, Shi K G, Qin H L, et al. 2020 Chin. Phys. B 29 097403
[35] Roushan P, Neill C, Chen Y, Kolodrubetz M, et al. 2014 Nature 515 241
[36] Cai W, Han J, Mei F, et al. 2019 Phys. Rev. Lett. 123 080501
[37] Wang D W, Liu R B, Zhu S Y and Scully M O 2015 Phys. Rev. Lett. 114 043602
[38] Gadway B 2015 Phys. Rev. A 92 043606
[39] Chen L, Wang P, Meng Z, Huang L, Cai H, Wang D W, Zhu S Y and Zhang J 2018 Phys. Rev. Lett. 120 193601
[40] Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X and Wang D W 2019 Phys. Rev. Lett. 122 023601
[41] He Y Y, Mao R S, Cai H, Zhang J X, Li Y Q, Yuan L Q, Zhu S Y and Wang D W 2021 Phys. Rev. Lett. 126 103601
[42] Scully M O, Fry E S, Ooi C H and Wdkiewicz K 2006 Phys. Rev. Lett. 96 010501
[43] An Fangzhao Alex, Meier E J and Gadway Bryce 2017 Sci. Adv. 3 e1602685
[44] Meier E J, et al. 2018 Science 362 929
[45] Xie D, Gou W, Xiao T, et al. 2019 npj Quantum Inf. 5 55
[46] Li L, Umer M and Gong J 2018 Phys. Rev. B 98 205422
[47] Li C, Li S, Zhang G and Song Z 2017 Phys. Rev. B 96 125418
[48] Zhang S L and Zhou Q 2017 Phys. Rev. A 95 061601(R)
[49] Maffei Maria, et al. 2018 New J. Phys. 20 013023
[50] Cardano F, et al. 2017 Nat. Comm. 8 15516
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[4] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[5] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[6] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[7] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[8] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[9] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[10] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[11] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[12] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[13] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[14] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[15] Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(12): 127203.
No Suggested Reading articles found!