Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣)1,2, Peng Gao(高鹏)1,2, Zhan-Ying Yang(杨战营)1,2,3,†, and Wen-Li Yang(杨文力)1,2,3,4
1 School of Physics, Northwest University, Xi'an 710069, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China; 4 Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose-Einstein condensates. Under different dipolar strengths, the two bright solitons can merge into a breathing wave, and then split or propagate constantly after several oscillating periods. We quantitatively study the breathing frequency of wave after merging and the asymmetry property of solitons after splitting, and analyze their formation mechanism by the system's energy evolution. Also, the change of initial phase difference brings distinct effects on the soliton interaction. Our results provide insight into the new dynamical phenomena in dipolar systems and enrich the understanding for interaction between dipolar solitons.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875220 and 12047502).
Corresponding Authors:
Zhan-Ying Yang
E-mail: zyyang@nwu.edu.cn
Cite this article:
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力) Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates 2021 Chin. Phys. B 30 120501
[1] Strecker K E, Partridge G B, Truscott A G et al. 2002 Nature417 150 [2] Khaykovich L, Schreck F, Ferrari G et al. 2002 Science296 1290 [3] Kevrekidis P G, Frantzeskakis D J and Carretero-Gonzalez R 2007 Emergent Nonlinear Phenomena in Bose-Einstein Condensates:Theory and Experiment (Germany:Springer Science and Business Media Press) [4] Achilleos V, Frantzeskakis D J, Kevrekidis P G et al. 2013 Phys. Rev. Lett.110 264101 [5] Yu H Y, Yan J R and Xie Q T 2004 Chin. Phys. Lett.21 1881 [6] Liu X X, Zhang X F and Zhang P 2010 Chin. Phys. Lett.27 070306 [7] Qi W, Li H F and Liang Z X 2019 Chin. Phys. Lett.36 040501 [8] Zhao L C, Luo X W and Zhang C 2020 Phys. Rev. A101 023621 [9] Zhao L C, Wang W, Tang Q et al. 2020 Phys. Rev. A101 043621 [10] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett.15 240 [11] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin:Springer) [12] Akhmediev N and Ankiewicz A 1993 Opt. Commun.100 186 [13] Nguyen J, Dyke P, Luo D et al. 2014 Nature Phys.10 918 [14] Zhao L C, Ling L, Yang Z Y et al. 2016 Nonlinear Dyn.83 659 [15] Zhao L C, Ling L, Yang Z Y et al. 2017 Nonlinear Dyn.88 2957 [16] Lu M W, Burdick N Q, Youn S H et al. 2011 Phys. Rev. Lett.107 190401 [17] Aikawa K, Frisch A, Mark M et al. 2012 Phys. Rev. Lett.108 210401 [18] Tang Y J, Burdick N Q, Baumann K et al. 2015 New J. Phys.17 045006 [19] Beaufils Q, Zanon T, Chicireanu R et al. 2008 Phys. Rev. A78 051603 [20] Griesmaier A, Werner J, Hensler S et al. 2005 Phys. Rev. Lett.94 160401 [21] Stuhler J, Griesmaier A, Koch T et al. 2005 Phys. Rev. Lett.95 150406 [22] Pedri P and Santos L 2005 Phys. Rev. Lett.95 200404 [23] Koch T, Lahaye T, Metz J et al. 2008 Nat. phys.4 218 [24] Lahaye T, Metz J, Froehlich B et al. 2008 Phys. Rev. Lett.101 080401 [25] Lahaye T, Menotti C, Santos L et al. 2009 Rep. Prog. Phys.72 126401 [26] Sinha S and Santos L 2007 Phys. Rev. Lett.99 140406 [27] Giovanazzi S, GöRlitz A and Pfau T 2002 Phys. Rev. Lett.89 130401 [28] Dauxois T, Ruffo S, Arimondo E et al. 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions:An Introduction (Berlin:Springer) [29] Baizakov B B, Al-Marzoug S M and Bahlouli H 2015 Phys. Rev. A92 033605 [30] Turmanov B K, Baizakov B B, Umarov B A et al. 2015 Phys. Lett. A379 1828 [31] Nath R, Pedri P and Santos L 2007 Phys. Rev. A76 013606 [32] Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett.101 210402 [33] Pawowski K and Rzewski K 2015 New J. Phys.17 105006 [34] Edmonds M J, Bland T, O'Dell D H J et al. 2016 Phys. Rev. A93 063617 [35] Bland T, Edmonds M J, Proukakis N P et al. 2015 Phys. Rev. A92 063601 [36] Raghunandan M, Mishra C, Lakomy K et al. 2015 Phys. Rev. A92 013637 [37] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. Lett.100 090406 [38] Eichler R, Main H and Wunner G 2011 Phys. Rev. A83 053604 [39] Eichler R, Zajec D, Köberle P et al. 2012 Phys. Rev. A86 053611 [40] Yi S and Pu H 2006 Phys. Rev. A73 061602 [41] Cuevas J, Malomed B A, Kevrekidis P G et al. 2009 Phys. Rev. A79 053608 [42] Edmonds M J, Bland T, Doran R and Parker N G 2017 New J. Phys.19 023019 [43] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia:Society for Industrial and Applied Mathematics)
Superfluid to Mott-insulator transition in a one-dimensional optical lattice Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.