|
|
Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates |
Xin Li(李欣)1,2, Peng Gao(高鹏)1,2, Zhan-Ying Yang(杨战营)1,2,3,†, and Wen-Li Yang(杨文力)1,2,3,4 |
1 School of Physics, Northwest University, Xi'an 710069, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China; 4 Institute of Modern Physics, Northwest University, Xi'an 710069, China |
|
|
Abstract We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose-Einstein condensates. Under different dipolar strengths, the two bright solitons can merge into a breathing wave, and then split or propagate constantly after several oscillating periods. We quantitatively study the breathing frequency of wave after merging and the asymmetry property of solitons after splitting, and analyze their formation mechanism by the system's energy evolution. Also, the change of initial phase difference brings distinct effects on the soliton interaction. Our results provide insight into the new dynamical phenomena in dipolar systems and enrich the understanding for interaction between dipolar solitons.
|
Received: 02 March 2021
Revised: 02 March 2021
Accepted manuscript online: 10 May 2021
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875220 and 12047502). |
Corresponding Authors:
Zhan-Ying Yang
E-mail: zyyang@nwu.edu.cn
|
Cite this article:
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力) Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates 2021 Chin. Phys. B 30 120501
|
[1] Strecker K E, Partridge G B, Truscott A G et al. 2002 Nature 417 150 [2] Khaykovich L, Schreck F, Ferrari G et al. 2002 Science 296 1290 [3] Kevrekidis P G, Frantzeskakis D J and Carretero-Gonzalez R 2007 Emergent Nonlinear Phenomena in Bose-Einstein Condensates:Theory and Experiment (Germany:Springer Science and Business Media Press) [4] Achilleos V, Frantzeskakis D J, Kevrekidis P G et al. 2013 Phys. Rev. Lett. 110 264101 [5] Yu H Y, Yan J R and Xie Q T 2004 Chin. Phys. Lett. 21 1881 [6] Liu X X, Zhang X F and Zhang P 2010 Chin. Phys. Lett. 27 070306 [7] Qi W, Li H F and Liang Z X 2019 Chin. Phys. Lett. 36 040501 [8] Zhao L C, Luo X W and Zhang C 2020 Phys. Rev. A 101 023621 [9] Zhao L C, Wang W, Tang Q et al. 2020 Phys. Rev. A 101 043621 [10] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240 [11] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin:Springer) [12] Akhmediev N and Ankiewicz A 1993 Opt. Commun. 100 186 [13] Nguyen J, Dyke P, Luo D et al. 2014 Nature Phys. 10 918 [14] Zhao L C, Ling L, Yang Z Y et al. 2016 Nonlinear Dyn. 83 659 [15] Zhao L C, Ling L, Yang Z Y et al. 2017 Nonlinear Dyn. 88 2957 [16] Lu M W, Burdick N Q, Youn S H et al. 2011 Phys. Rev. Lett. 107 190401 [17] Aikawa K, Frisch A, Mark M et al. 2012 Phys. Rev. Lett. 108 210401 [18] Tang Y J, Burdick N Q, Baumann K et al. 2015 New J. Phys. 17 045006 [19] Beaufils Q, Zanon T, Chicireanu R et al. 2008 Phys. Rev. A 78 051603 [20] Griesmaier A, Werner J, Hensler S et al. 2005 Phys. Rev. Lett. 94 160401 [21] Stuhler J, Griesmaier A, Koch T et al. 2005 Phys. Rev. Lett. 95 150406 [22] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404 [23] Koch T, Lahaye T, Metz J et al. 2008 Nat. phys. 4 218 [24] Lahaye T, Metz J, Froehlich B et al. 2008 Phys. Rev. Lett. 101 080401 [25] Lahaye T, Menotti C, Santos L et al. 2009 Rep. Prog. Phys. 72 126401 [26] Sinha S and Santos L 2007 Phys. Rev. Lett. 99 140406 [27] Giovanazzi S, GöRlitz A and Pfau T 2002 Phys. Rev. Lett. 89 130401 [28] Dauxois T, Ruffo S, Arimondo E et al. 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions:An Introduction (Berlin:Springer) [29] Baizakov B B, Al-Marzoug S M and Bahlouli H 2015 Phys. Rev. A 92 033605 [30] Turmanov B K, Baizakov B B, Umarov B A et al. 2015 Phys. Lett. A 379 1828 [31] Nath R, Pedri P and Santos L 2007 Phys. Rev. A 76 013606 [32] Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett. 101 210402 [33] Pawowski K and Rzewski K 2015 New J. Phys. 17 105006 [34] Edmonds M J, Bland T, O'Dell D H J et al. 2016 Phys. Rev. A 93 063617 [35] Bland T, Edmonds M J, Proukakis N P et al. 2015 Phys. Rev. A 92 063601 [36] Raghunandan M, Mishra C, Lakomy K et al. 2015 Phys. Rev. A 92 013637 [37] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. Lett. 100 090406 [38] Eichler R, Main H and Wunner G 2011 Phys. Rev. A 83 053604 [39] Eichler R, Zajec D, Köberle P et al. 2012 Phys. Rev. A 86 053611 [40] Yi S and Pu H 2006 Phys. Rev. A 73 061602 [41] Cuevas J, Malomed B A, Kevrekidis P G et al. 2009 Phys. Rev. A 79 053608 [42] Edmonds M J, Bland T, Doran R and Parker N G 2017 New J. Phys. 19 023019 [43] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia:Society for Industrial and Applied Mathematics) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|