|
|
Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers |
Jianwei Zhang(张见微)1,2, Chengmin Zhang(张承民)1,2,†, Di Li(李菂)1,2,6,‡, Xianghan Cui(崔翔翰)1,2, Wuming Yang(杨伍明)3, Dehua Wang(王德华)4, Yiyan Yang(杨佚沿)5, Shaolan Bi(毕少兰)3, and Xianfei Zhang(张先飞)3 |
1 CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Department of Astronomy, Beijing Normal University, Beijing 100875, China; 4 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China; 5 School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China; 6 NAOC-UKZN Computational Astrophysics Centre, University of KwaZulu-Natal, Durban 4000, South Africa |
|
|
Abstract LIGO-Virgo has observed the gravitational waves (GWs) from the coalescence of binary black hole (BBH) and binary neutron star (BNS) during O1 and O2, and the ones from NS-BH are expected to be hunted in the operating O3 run. The population properties and mass distribution of NS-BH mergers are poorly understood now, thus researchers simulated their chirp mass ($\mathcal{M}$) distribution by a synthetic model, in which the BHs and NSs were inferred by LIGO-Virgo (O1/O2), and obtained the values in the range of $2.1M_{\odot}<\mathcal{M}<7.3M_{\odot}$. In this paper, we further simulate the GW frequency ($f_{\scriptscriptstyle {\rm GW}}$) distribution of NS-BH mergers by the above-stated synthetic model, with a basic binary system model through the Monte Carlo method. Our results predict that the median with 90% credible intervals is $165_{-64}^{+475}$~Hz in the case of Schwarzschild BH when the system just before merger, and this GW frequency is expected to increase several times in the merger stage, which is lying in the frequency band of LIGO-Virgo, i.e., about 15 ~Hz to a few kHz. Our results provide an important reference for hunting the NS-BH mergers by the on-going O3 run of LIGO-Virgo.
|
Received: 15 March 2021
Revised: 23 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
04.30.-w
|
(Gravitational waves)
|
|
02.70.Rr
|
(General statistical methods)
|
|
97.60.Jd
|
(Neutron stars)
|
|
97.60.Lf
|
(Black holes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11988101, 11773005, U2031203, U1631236, 11703001, U1731238, U1938117, 11725313, and 11721303), the International Partnership Program of Chinese Academy of Sciences (Grant No. 114A11KYSB20160008), and the National Key R&D Program of China (Grant No. 2016YFA0400702), and the Subsidy Project of the National Natural Science Foundation of China (Grant No. 2021GZJ006). |
Corresponding Authors:
Chengmin Zhang, Di Li
E-mail: zhangcm@bao.ac.cn;dili@nao.cas.cn
|
Cite this article:
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞) Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers 2021 Chin. Phys. B 30 120401
|
[1] Abbott B P et al. 2016 Phys. Rev. Lett. 116 061102 [2] Aasi J et al. 2015 Class. Quantum Grav. 32 074001 [3] Acernese F et al. 2015 Class. Quantum Grav. 32 024001 [4] Abbott B P et al. 2017 Phys. Rev. Lett. 119 161101 [5] Abbott B P et al. 2019 Phys. Rev. X 9 031040 [6] Belczynski K, Holz D E, Bulik T and O'Shaughnessy R 2016 Nature 534 512 [7] Mandel I and de Mink S E 2016 Mon. Not. R. Astron. Soc. 458 2634 [8] Kruckow M U, Tauris T M, Langer N, Kramer M and Izzard R G 2018 Mon. Not. R. Astron. Soc. 481 1908 [9] Eldridge J J, Stanway E R and Tang P N 2019 Mon. Not. R. Astron. Soc. 482 870 [10] Askar A, Szkudlarek M, Gondek-Rosińska D, Giersz M and Bulik T 2017 Mon. Not. R. Astron. Soc. 464 L36 [11] Banerjee S 2018 Mon. Not. R. Astron. Soc. 473 909 [12] Fragione G and Kocsis B 2018 Phys. Rev. Lett. 121 161103 [13] Rodriguez C L, Amaro-Seoane P, Chatterjee S and Rasio F A 2018 Phys. Rev. Lett. 120 151101 [14] Antonini F, Toonen S and Hamers A S 2017 Astrophys. J. 841 77 [15] Silsbee K and Tremaine S 2017 Astrophys. J. 836 39 [16] Fragione G and Loeb A 2019 Mon. Not. R. Astron. Soc. 486 4443 [17] Fragione G and Loeb A 2019 Mon. Not. R. Astron. Soc. 490 4991 [18] Liu B and Lai D 2019 Mon. Not. R. Astron. Soc. 483 4060 [19] Bartos I, Kocsis B, Haiman Z and Márka S 2017 Astrophys. J. 835 165 [20] Stone N C, Metzger B D and Haiman Z 2017 Mon. Not. R. Astron. Soc. 464 946 [21] Zhang J W, Zhang C M, Yang W M, Yang Y Y, Li D, Bi S L and Zhang X F 2020 Phys. Rev. D 101 043018 [22] Bambi C 2018 Annalen der Physik 530 1700430 [23] Blanchet L 2014 Living Rev. Relat. 17 2 [24] Zhong S Y and Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [25] Zhong S Y, Liu S and Hu S J 2013 Acta Phys. Sin. 62 230401 (in Chinese) [26] Gamal G L N 2012 Chin. Phys. B 21 060401 [27] Wen D H, Fu H Y and Chen W 2011 Chin. Phys. B 20 060402 [28] Lehner L 2001 Class. Quantum Grav. 18 R25 [29] Pretorius F 2005 Phys. Rev. Lett. 95 121101 [30] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett. 96 111101 [31] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys. Rev. Lett. 96 111102 [32] Zhang Y, Zhao W, Yuan Y F and Xia T Y 2005 Chin. Phys. Lett. 22 1817 [33] Kerr R P 1963 Phys. Rev. Lett. 11 237 [34] Bambi C 2016 Astrophysics of Black Holes (Berlin:Springer-Verlag) vol. 440 [35] Bambi C 2017 Black Holes:A Laboratory for Testing Strong Gravity (Singapore Pte Ltd.:Springer Nature) [36] van der Klis M 2004 arXiv:astro-ph/0410551 [37] Zhang C M, Wei Y C, Yin H X, Zhao Y H, Lei Y J, Song L M, Zhang F and Yan Y 2010 Sci. Chin.-Phys. Mech. Astron. 53 114 [38] Robitaille T P et al. 2013 Astron. Astrophys. 558 A33 [39] Virtanen P et al. 2020 Nat. Methods 17 261 [40] Abbott B P et al. 2019 Phys. Rev. X 9 011001 [41] Antoniadis J, Tauris T M, Ozel F, Barr E, Champion D J and Freire P C C 2016 arXiv:1605.01665[astro-ph.HE] [42] Yang Y Y, Zhang C M, Li D, Chen L, Linghu R F and Zhi Q J 2019 Publ. Astron. Soc. Pacific 131 064201 [43] Zhang J W, Yang Y Y, Zhang C M, Yang W M, Li D, Bi S L and Zhang X F 2019 Mon. Not. R. Astron. Soc. 488 5020 [44] Miller C 2002 Nature 420 31 [45] Zhang C M, Wang J, Zhao Y H, Yin H X, Song L M, Menezes D P, Wickramasinghe D T, Ferrario L and Chardonnet P 2011 Astron. Astrophys. 527 A83 [46] Özel F and Freire P 2016 Annu. Rev. Astron. Astrophys. 54 401 [47] Fernandez N, Ghalsasi A and Profumo S 2019 arXiv:1911.07862[hep-ph] [48] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J. 178 347 [49] Schwarzschild K 1916 Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 189 [50] Schwarzschild K 1999 arXiv:physics/9905030[physics.hist-ph] [51] Pürrer M, Hannam M and Ohme F 2016 Phys. Rev. D 93 084042 [52] Pürrer M, Hannam M, Ajith P and Husa S 2013 Phys. Rev. D 88 064007 [53] Vitale S, Lynch R, Raymond V, Sturani R, Veitch J and Graff P 2017 Phys. Rev. D 95 064053 [54] Abbott B P et al. 2017 Class. Quantum Grav. 34 104002 [55] Abbott B P et al. 2019 Astrophys. J. Lett. 882 L24 [56] Ajith P, Hannam M, Husa S, Chen Y, Brügmann B, Dorband N, Müller D, Ohme F, Pollney D, Reisswig C, Santamaría L and Seiler J 2011 Phys. Rev. Lett. 106 241101 [57] Santamaría L, Ohme F, Ajith P, Brügmann B, Dorband N, Hannam M, Husa S, Mösta P, Pollney D, Reisswig C, Robinson E L, Seiler J and Krishnan B 2010 Phys. Rev. D 82 064016 [58] Racine É 2008 Phys. Rev. D 78 044021 [59] Amaro Seoane P et al., 2013 arXiv:1305.5720[astro-ph.CO] [60] Amaro Seoane P et al. 2017 arXiv:1702.00786 [61] Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011 [62] Hobbs G, Archibald A, Arzoumanian Z, et al. 2010 Class. Quantum Grav. 27 084013 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|