Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118701    DOI: 10.1088/1674-1056/abf34e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device

Jin-Long Jiao(焦金龙)1, Qiu-Hong Gan(甘秋宏)1, Shi Cheng(程实)1, Ye Liao(廖晔)1, Shao-Ying Ke(柯少颖)2, Wei Huang(黄巍)1,†, Jian-Yuan Wang(汪建元)1, Cheng Li(李成)1, and Song-Yan Chen(陈松岩)1
1 Department of Physics and Jiujiang Research Institute, Xiamen University, Xiamen 361005, China;
2 College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
Abstract  The special any-polar resistive switching mode includes the coexistence and stable conversion between the unipolar and the bipolar resistive switching mode under the same compliance current. In the present work, the any-polar resistive switching mode is demonstrated when thin Ti intercalations are introduced into both sides of Pt/HfO2/Pt RRAM device. The role of the Ti intercalations contributes to the fulfillment of the any-polar resistive switching working mechanism, which lies in the filament constructed by the oxygen vacancies and the effective storage of the oxygen ion at both sides of the electrode interface.
Keywords:  filament      memory      resistive switching  
Received:  21 January 2021      Revised:  16 March 2021      Accepted manuscript online:  30 March 2021
PACS:  87.15.La (Mechanical properties)  
  79.60.Dp (Adsorbed layers and thin films)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004087, 61474081, and 61534005), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01815), the Natural Science Foundation of Zhangzhou, China (Grant No. ZZ2020J32), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192ACBL20048).
Corresponding Authors:  Wei Huang     E-mail:  weihuang@xmu.edu.cn

Cite this article: 

Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩) Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device 2021 Chin. Phys. B 30 118701

[1] Waser R and Aono M 2007 Nat. Mater. 6 833
[2] Park I S, Kim K R, Lee S and Ahn J 2007 Jpn. J. Appl. Phys. 46 2172
[3] Kang J and Park I S 2016 IEEE Trans. Electron Dev. 63 2380
[4] Strukov D B and Likharev 2005 Nanotechnology 16 888
[5] Rahaman S Z, Lin Y De, Lee H Y, Chen Y S, Chen P S, Chen W S and Wang P H 2017 Langmuir 33 4654
[6] Lee S, Sohn J, Jiang Z, Chen H Y and Philip Wong H S 2015 Nat. Commun. 6 8407
[7] Guan W, Long S, Liu Q, Liu M and Wang W 2008 IEEE Electron Dev. Lett. 29 434
[8] F Pan, S Gao, C Chen, C Song and F Zeng 2014 Mater. Sci. Eng. R 83 1
[9] Chen C, Gao S, Tang G, Song C, Zeng F and Pan F 2012 IEEE Electron Dev. Lett. 33 1711
[10] Lin K L, Hou T H, Shieh J, Lin J H, Chou C T and Lee Y J 2011 J. Appl. Phys. 109 084104
[11] Doo Seok Jeong, Schroeder H and Waser R 2007 Electrochem. Solid-State Lett. 10 G51
[12] Lee S, Kim H, Park J and Yong K 2011 J. Appl. Phys. 108 076101
[13] Goux L, Lisoni J G, Jurczak M, Wouters D J, Courtade L and Muller C 2010 J. Appl. Phys. 107 024512
[14] Xu D, Xiong Y, Tang M and Zeng B 2014 J. Alloys Compd. 584 269
[15] Hao A, Ismail M, He S, Huang W, Qin N and Bao D 2018 J. Appl. Phys. 123 085108
[16] Xu D L, Xiong Y, Tang M H, Zeng B W and Xiao Y G 2014 Appl. Phys. Lett. 104 183501
[17] Hu W, Chen X M, Wu G H, Lin Y T, Qin N and Bao D H 2012 Appl. Phys. Lett. 101 063501
[18] Jiao J L, Li L C, Cheng S, Chang A L, Mao Y C, Huang W and Chen S Y 2019 Appl. Phys. Lett. 115 143506
[19] Key B, Schroeder D J, Ingram B J and Vaughey J T 2012 Chemistry of Materials 24 287
[20] Aono H and Sugimoto E 1996 J. Am. Ceram. Soc. 79 2786
[21] Aono H, Sugimoto E, Sadaoka Y, Aono H, Sugimoto E, Sadaoka Y, Imanaka N and Adachi G 1989 J. Electrochem. Soc. 136 590
[22] González-Cordero G, Jiménez-Molinos F, Roldán J B, González M B and Campabadal F 2017 J. Vac. Sci. Technol. B 35 01A110
[23] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 IEEE International Electron Devices Meeting (IEDM), 2008, December 15-17, San Francisco, CA, USA
[24] Jung Y C, Seong S, Lee T, Kim S Y, Park I S and Ahn J 2018 Appl. Surf. Sci. 435 117
[25] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L and Akinwande D 2018 Nano Lett. 18 434
[26] Cao M G, Chen Y S, Sun J R and Shen B G 2012 Appl. Phys. Lett. 101 203502
[27] Singh N and Kaur D 2018 Appl. Phys. Lett. 113 162103
[28] Tsuruoka T 2012 Nanotechnology 23 435705
[29] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L and Akinwande D 2018 Nano Lett. 18 434
[30] Kim H D, An H M, Hong S M and Kim T G 2012 Semicond. Sci. Technol. 27 125020
[31] Lee M J 2011 Nat. Mater. 10 625
[32] Acharyya D 2014 Microelectronics Reliability 54 541
[33] Liu Q, Guan W H, Jiang P, Liu W F and Liu M 2008 Appl. Phys. Lett. 92 012117
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[6] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[7] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[8] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[9] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[10] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[11] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[12] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[13] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[14] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[15] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
No Suggested Reading articles found!