INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device |
Jin-Long Jiao(焦金龙)1, Qiu-Hong Gan(甘秋宏)1, Shi Cheng(程实)1, Ye Liao(廖晔)1, Shao-Ying Ke(柯少颖)2, Wei Huang(黄巍)1,†, Jian-Yuan Wang(汪建元)1, Cheng Li(李成)1, and Song-Yan Chen(陈松岩)1 |
1 Department of Physics and Jiujiang Research Institute, Xiamen University, Xiamen 361005, China; 2 College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China |
|
|
Abstract The special any-polar resistive switching mode includes the coexistence and stable conversion between the unipolar and the bipolar resistive switching mode under the same compliance current. In the present work, the any-polar resistive switching mode is demonstrated when thin Ti intercalations are introduced into both sides of Pt/HfO2/Pt RRAM device. The role of the Ti intercalations contributes to the fulfillment of the any-polar resistive switching working mechanism, which lies in the filament constructed by the oxygen vacancies and the effective storage of the oxygen ion at both sides of the electrode interface.
|
Received: 21 January 2021
Revised: 16 March 2021
Accepted manuscript online: 30 March 2021
|
PACS:
|
87.15.La
|
(Mechanical properties)
|
|
79.60.Dp
|
(Adsorbed layers and thin films)
|
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004087, 61474081, and 61534005), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01815), the Natural Science Foundation of Zhangzhou, China (Grant No. ZZ2020J32), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192ACBL20048). |
Corresponding Authors:
Wei Huang
E-mail: weihuang@xmu.edu.cn
|
Cite this article:
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩) Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device 2021 Chin. Phys. B 30 118701
|
[1] Waser R and Aono M 2007 Nat. Mater. 6 833 [2] Park I S, Kim K R, Lee S and Ahn J 2007 Jpn. J. Appl. Phys. 46 2172 [3] Kang J and Park I S 2016 IEEE Trans. Electron Dev. 63 2380 [4] Strukov D B and Likharev 2005 Nanotechnology 16 888 [5] Rahaman S Z, Lin Y De, Lee H Y, Chen Y S, Chen P S, Chen W S and Wang P H 2017 Langmuir 33 4654 [6] Lee S, Sohn J, Jiang Z, Chen H Y and Philip Wong H S 2015 Nat. Commun. 6 8407 [7] Guan W, Long S, Liu Q, Liu M and Wang W 2008 IEEE Electron Dev. Lett. 29 434 [8] F Pan, S Gao, C Chen, C Song and F Zeng 2014 Mater. Sci. Eng. R 83 1 [9] Chen C, Gao S, Tang G, Song C, Zeng F and Pan F 2012 IEEE Electron Dev. Lett. 33 1711 [10] Lin K L, Hou T H, Shieh J, Lin J H, Chou C T and Lee Y J 2011 J. Appl. Phys. 109 084104 [11] Doo Seok Jeong, Schroeder H and Waser R 2007 Electrochem. Solid-State Lett. 10 G51 [12] Lee S, Kim H, Park J and Yong K 2011 J. Appl. Phys. 108 076101 [13] Goux L, Lisoni J G, Jurczak M, Wouters D J, Courtade L and Muller C 2010 J. Appl. Phys. 107 024512 [14] Xu D, Xiong Y, Tang M and Zeng B 2014 J. Alloys Compd. 584 269 [15] Hao A, Ismail M, He S, Huang W, Qin N and Bao D 2018 J. Appl. Phys. 123 085108 [16] Xu D L, Xiong Y, Tang M H, Zeng B W and Xiao Y G 2014 Appl. Phys. Lett. 104 183501 [17] Hu W, Chen X M, Wu G H, Lin Y T, Qin N and Bao D H 2012 Appl. Phys. Lett. 101 063501 [18] Jiao J L, Li L C, Cheng S, Chang A L, Mao Y C, Huang W and Chen S Y 2019 Appl. Phys. Lett. 115 143506 [19] Key B, Schroeder D J, Ingram B J and Vaughey J T 2012 Chemistry of Materials 24 287 [20] Aono H and Sugimoto E 1996 J. Am. Ceram. Soc. 79 2786 [21] Aono H, Sugimoto E, Sadaoka Y, Aono H, Sugimoto E, Sadaoka Y, Imanaka N and Adachi G 1989 J. Electrochem. Soc. 136 590 [22] González-Cordero G, Jiménez-Molinos F, Roldán J B, González M B and Campabadal F 2017 J. Vac. Sci. Technol. B 35 01A110 [23] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 IEEE International Electron Devices Meeting (IEDM), 2008, December 15-17, San Francisco, CA, USA [24] Jung Y C, Seong S, Lee T, Kim S Y, Park I S and Ahn J 2018 Appl. Surf. Sci. 435 117 [25] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L and Akinwande D 2018 Nano Lett. 18 434 [26] Cao M G, Chen Y S, Sun J R and Shen B G 2012 Appl. Phys. Lett. 101 203502 [27] Singh N and Kaur D 2018 Appl. Phys. Lett. 113 162103 [28] Tsuruoka T 2012 Nanotechnology 23 435705 [29] Ge R, Wu X, Kim M, Shi J, Sonde S, Tao L and Akinwande D 2018 Nano Lett. 18 434 [30] Kim H D, An H M, Hong S M and Kim T G 2012 Semicond. Sci. Technol. 27 125020 [31] Lee M J 2011 Nat. Mater. 10 625 [32] Acharyya D 2014 Microelectronics Reliability 54 541 [33] Liu Q, Guan W H, Jiang P, Liu W F and Liu M 2008 Appl. Phys. Lett. 92 012117 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|