INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing |
Ling Xu(徐玲)1, Yun Shen(沈云)1,†, Liangliang Gu(顾亮亮)2, Yin Li(李寅)1, Xiaohua Deng(邓晓华)3, Zhifu Wei(魏之傅)1, Jianwei Xu(徐建伟)1, and Juncheng Cao(曹俊诚)4 |
1 Department of Physics, Nanchang University, Nanchang 330031, China; 2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 3 Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China; 4 Shanghai Institute of Microsystem and Information, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract We propose a terahertz hybrid metamaterial composed of subwavelength metallic slits and graphene plasmonic ribbons for sensing application. This special design can cause the interaction between the plasmon resonances of the metallic slits and graphene ribbons, giving rise to a strong coupling effect and Rabi splitting. Intricate balancing in the strong coupling region can be perturbed by the carrier concentration of graphene, which is subject to the analyte on its surface. Thereby, the detection of analyte can be reflected as a frequency shift of resonance in terahertz transmission spectra. The result shows that this sensor can achieve a theoretical detection limit of 325 electrons or holes per square micrometer. Meanwhile, it also works well as a refractive index sensor with the frequency sensitivity of 485 GHz/RIU. Our results may contribute to design of ultra-micro terahertz sensors.
|
Received: 04 February 2021
Revised: 20 March 2021
Accepted manuscript online: 26 April 2021
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61865009, 61927813, and 62005168). |
Corresponding Authors:
Yun Shen
E-mail: shenyun@ncu.edu.cn
|
Cite this article:
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚) Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing 2021 Chin. Phys. B 30 118702
|
[1] Nag A, Mitra A and Mukhopadhyay S C 2018 Sens. Actuator A Phys. 270 177 [2] Fan C Z, Tian Y C, Ren P W and Jia W 2019 Chin. Phys. B 28 76105 [3] Li J S and Chen X S 2020 Chin. Phys. B 29 78703 [4] Zhang P H, Lu B Y, Sun Y W, Yu H X, Xu K X and Li D C 2019 Biomed. Opt. Express 10 215 [5] Lan F, Luo F, Mazumder P, Yang Z Q, Meng L, Bao Z Q, Zhou J, Zhang Y X, Liang S X, Shi Z J, Khan A R, Zhang Z Q, Wang L Y, Yin J and Zeng H X 2019 Biomed. Opt. Express 10 3789 [6] Lee S H, Choe J H, Kim C, Bae S, Kim J S, Park Q H and Seo M 2020 Sens. Actuators B Chem. 310 127841 [7] Xu W D, Xie L J, Zhu J F, Tang L H, Singh R J, Wang C, Ma Y G, Chen H T and Ying Y B 2019 Carbon 141 247 [8] Huang Y X, Dong X C, Liu Y X, Li L J and Chen P 2011 J. Mater. Chem. 21 12358 [9] Wen D G, Bin L S, Feng Z H, Kun K X, Ming L H, Xiang L B and Yuan L S 2015 Chin. Phys. B 24 118103 [10] Liu F and Cubukcu E 2013 Phys. Rev. B 88 115439 [11] Kim S, Jang M S, Brar V W, Tolstova Y, Mauser K W and Atwater H A 2016 Nat. Commun. 7 12323 [12] Balci S and Kocabas C 2015 Opt. Lett. 40 3424 [13] Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L and Xing H G 2012 Nano Lett. 12 4518 [14] Qing Y M, Ma H F, Yu S and Cui T J 2019 J. Phys. D: Appl. Phys. 52 15104 [15] Nuttawut K S, Xiong X, Bai P, You J B, Png C E, Wu L and Hess O 2019 Nano Lett. 19 5853 [16] Törmä P and Barnes W L 2014 Rep. Prog. Phys. 78 13901 [17] Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 68 077803 [18] Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lü Y Y, Zhang XF, Ding X and Yao J Q 2018 Acta Phys. Sin. 67 118102 (in Chinese) [19] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 [20] Wirth Lima A J, Alves Sousa P P and Bezerra Fraga W 2020 Chin. Phys. B 29 37801 [21] Vasić B and Gajić R 2015 Phys. Rev. Lett. 4 024007 [22] Zhang Z Y, Fan F, Li T F, Ji Y Y and Chang S J 2020 Chin. Phys. B 29 078707 [23] Guo X, Hu H, Zhu X, Yang X and Dai Q 2017 Nanoscale 9 14998 [24] Zhu W G, Xu H Q, Pan J T, Zhang S, Zheng H D, Zhong Y C, Yu J H and Chen Z 2020 Opt. Express 28 25869 [25] Taleb F, Al Naib I and Koch M 2020 Sensors 20 2265 [26] Chen H, Ma S H, Yan W X, Wu X M and Wang X Z 2013 Chin. Phys. Lett. 30 030702 [27] Han Z H, Jiang H, Tan Z Y, Cao J C and Cai Y J 2020 Chin. Phys. B 29 084209 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|