Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110201    DOI: 10.1088/1674-1056/abfd9f
GENERAL   Next  

Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots

Guo-Feng Wu(武国峰)1, Jun Wang(王俊)1,†, Wei-Rong Chen(陈维荣)1, Li-Na Zhu(祝丽娜)1, Yuan-Qing Yang(杨苑青)1, Jia-Chen Li(李家琛)1, Chun-Yang Xiao(肖春阳)1, Yong-Qing Huang(黄永清)1, Xiao-Min Ren(任晓敏)1, Hai-Ming Ji(季海铭)2, and Shuai Luo(罗帅)2
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The threading dislocations (TDs) in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon. The insertion of InAs quantum dots (QDs) acting as dislocation filters is a pretty good alternative to solving this problem. In this paper, a finite element method (FEM) is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations (MDs). Making a comparison of elastic strain energy between the two isolated systems, a reasonable result is obtained. The effect of the cap layer thickness and the base width of QDs on TD bending are studied, and the results show that the bending area ratio of single QD (the bending area divided by the area of the QD base) is evidently affected by the two factors. Moreover, we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs. For the QD with 24-nm base width and 5-nm cap layer thickness, taking the QD density of 1011 cm-2 into account, the bending area ratio of single-layer QDs (the area of bending TD divided by the area of QD layer) is about 38.71%. With inserting five-layer InAs QDs, the TD density decreases by 91.35%. The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.
Keywords:  InAs/GaAs quantum dots      threading dislocation      finite element method      bending area  
Received:  27 January 2021      Revised:  23 April 2021      Accepted manuscript online:  01 May 2021
PACS:  02.70.Dh (Finite-element and Galerkin methods)  
  03.65.Db (Functional analytical methods)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.05.Ea (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874148, 61974141, and 61674020), the Beijing Natural Science Foundation, China (Grant No. 4192043), the National Key Research and Development Program of China (Grant No. 2018YFB2200104), the Fund from the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100004819012), the Project of the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, China (Grant No. IPOC2018ZT01), and the 111 Project of China (Grant No. B07005).
Corresponding Authors:  Jun Wang     E-mail:  wangjun12@bupt.edu.cn

Cite this article: 

Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅) Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots 2021 Chin. Phys. B 30 110201

[1] Liang D and Bowers J E 2010 Nat. Photon. 8 511
[2] Rickman A 2014 Nat. Photon. 8 579
[3] Miller D A B 2009 Proc. IEEE. 97 1166
[4] Reed G T, Mashanovich G, Gardes F Y and Thomoson D J 2010 Nat. Photon. 4 518
[5] Won R 2010 Nat. Photon. 4 498
[6] Bahram J and Fathpour S 2006 J. Lightw. Technol. 24 4600
[7] Yamaguchi M and Amano C 1985 J. Appl. Phys. 58 3601
[8] Huang H, Ren X M, Lv J H, Wang Q, Song H L, Cai S W, Huang Y Q and Qu B 2008 J. Appl. Phys. 104 113114
[9] Wang J, Hu H Y, He Y R, Deng C, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. Lett. 32 088101
[10] Wang Y F, Wang Q, Jia Z G, Li X Y, Deng C, Ren X M, Cai S W, and Huang Y Q 2013 J. Vac. Sci. Technol. B 31 051211
[11] Lee S C, Dawson L R, Huang S H and Brueck S R J 2011 Cryst. Growth Des. 11 3673
[12] Cheng S F, Gao L, Woo R L, Pangan A, Malouf G, Goorsky M S, Wang K L and Hicks R F 2008 J. Cryst. Growth 310 562
[13] Kazi Z I, Egawa T, Jimbo T and Umeno M 1999 IEEE Photon. Technol. Lett. 11 1563
[14] Lee S C and Brueck S R J 2009 Appl. Phys. Lett. 94 153110
[15] Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11969
[16] Grundmann M, ledentsov N N, Heitz R, Eckey L, Christen J, Bohrer J, Bimberg D, Ruvimov S S, Werner P, Richter U, Heydenreich J, Ustinov V M, Egorov A Yu, Zhukov A E, Kopev P S and Alferov Zh L 1995 Phys. Status Solidi B 188 249
[17] Cusack M, Briddon and Jaros M 1996 Phys. Rev. B 54 R2300
[18] Yang J, Bhattacharya P and Mi Z 2007 IEEE Trans. Electron Dev. 54 2849
[19] Wang J, Hu H Y, Deng C, He Y R, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. B 24 028101
[20] Hu H Y, Wang J, He Y R, Liu K, Liu Y Y, Wang Q, Duan X F, Huang Y Q and Ren X M 2016 Appl. Phys. A 122 588
[21] Ye H, Lu P, Yu Z Y, Zhou S and Liu Y M 2011 Solid State Sci. 13 1809
[22] Zhou S, Liu Y M, Wang D L and Yu Z Y 2013 Superlattices Microstruct. 63 29
[23] Gatti R, Marzegalli A, Zinovyev V A, Montalenti F and Miglio L 2008 Phys. Rev. B 78 184104
[24] Benabbas T, Androussi Y and Lefebvre A 1999 J. Appl. Phys. 86 1945
[25] Liu G R and Jerry Quek S S 2002 Semicond. Sci. Technol. 17 630
[26] Mi Z, Yang J, Bhattacharya P and Huffaker D L 2006 Electron. Lett. 42 121
[27] Zhou S, Liu Y M, Lu P F, Han L H and Yu Z H 2014 J. Nanomater. 2014 1
[28] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2008 Chin. Phys. B 17 3471
[29] Ye H, Lu P F, Yu Z Y, Yao W J, Chen Z H, Jia B Y and Liu Y M 2010 Chin. Phys. B 19 047302
[30] Wei C and Athanasios A 2006 J. Mech. Phys. Solids 54 561
[31] Ye H, Lu P F, Yu Z Y, Jia B Y, Feng H and Liu Y M 2010 Physica E 42 2402
[1] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[2] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[3] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[4] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[5] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[6] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[7] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[8] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[11] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[12] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[13] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[14] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[15] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
No Suggested Reading articles found!