Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100601    DOI: 10.1088/1674-1056/ac1e20
GENERAL Prev   Next  

LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets

Ying Fu(付盈)1,2, Lianglong Huang(黄良龙)3, Xuefeng Zhou(周雪峰)3, Jian Chen(陈见)3, Xinyuan Zhang(张馨元)4, Pengyun Chen(陈鹏允)5, Shanmin Wang(王善民)3, Cai Liu(刘才)2, Dapeng Yu(俞大鹏)2, Hai-Feng Li(李海峰)1,†, Le Wang(王乐)2,‡, and Jia-Wei Mei(梅佳伟)2,6,§
1 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China;
2 Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
3 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
4 Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China;
5 Institute of Resources Utilization and Rare-earth Development, Guangdong Academy of Sciences, Guangzhou 51065, China;
6 Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism. Three isostructural kagome antiferromagnets LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) have been successfully synthesized by the hydrothermal method. LnCu3(OH)6Cl3 adopts space group P3m1 and features the layered Cu-kagome lattice with lanthanide Ln3+ cations sitting at the center of the hexagons. Although heavy lanthanides (Ln = Gd, Tb, Dy) in LnCu3(OH)6Cl3 provide a large effective magnetic moment and ferromagnetic-like spin correlations compared to light-lanthanides (Nd, Sm, Eu) analogues, Cu-kagome holds an antiferromagnetically ordered state at around 17 K like YCu3(OH)6Cl3.
Keywords:  kagome lattice      hydrothermal method      frustrated magnetism      spin-1/2  
Received:  19 July 2021      Revised:  09 August 2021      Accepted manuscript online:  17 August 2021
PACS:  06.60.Ei (Sample preparation)  
  61.05.cp (X-ray diffraction)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: Project supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C062), Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices (Grant No. ZDSYS20190902092905285), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515120100). L. Wang acknowledges the support of China Postdoctoral Science Foundation (Grant No. 2020M682780). H. F. Li acknowledges the financial supports from Science and Technology Development Fund, Macao SAR, China (File No. 0051/2019/AFJ), Guangdong Basic and Applied Basic Research Foundation (Guangdong-Dongguan Joint Fund No. 2020B1515120025), and Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, China (Grant No. 2019B121205003).
Corresponding Authors:  Hai-Feng Li, Le Wang, Jia-Wei Mei     E-mail:  haifengli@um.edu.mo;wangl36@sustech.edu.cn;meijw@sustech.edu.cn

Cite this article: 

Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟) LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets 2021 Chin. Phys. B 30 100601

[1] Savary L and Balents L 2016 Rep. Prog. Phys. 80 016502
[2] Broholm C, Cava R, Kivelson S, Nocera D, Norman M and Senthil T 2020 Science 367 6475
[3] Feng Z, Yi W, Zhu K, Wei Y, Miao S, Ma J, Luo J, Li S, Meng Z Y and Shi Y 2018 Chin. Phys. Lett. 36 017502
[4] Wen J J and Lee Y S 2019 Chin. Phys. Lett. 36 50101
[5] Wei Y, Ma X, Feng Z, Adroja D, Hillier A, Biswas P, Senyshyn A, Hoser A, Mei J W, Meng Z Y, Luo H Q, Shi Y G and Li S L 2020 Chin. Phys. Lett. 37 107503
[6] Helton J, Matan K, Shores M, Nytko E, Bartlett B, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[7] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[8] Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S, Liu F, Luo J, Li S, Zheng G, Meng Z Y, Mei J W and Shi Y 2017 Chin. Phys. Lett. 34 077502
[9] Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J, Senyshyn A, dela Cruz C, Yi W, Mei J W, Meng Z Y, Shi Y G and Li S 2018 Phys. Rev. B 98 155127
[10] Seo D K and Whangbo M H 1996 J. Am. Chem. Soc. 118 3951
[11] Kato H, Kato M, Yoshimura K and Kosuge K 2001 J. Phys.: Condens. Matter 13 9311
[12] Inami T, Nishiyama M, Maegawa S and Oka Y 2000 Phys. Rev. B 61 12181
[13] Nytko E A, Shores M P, Helton J S and Nocera D G 2009 Inorg. Chem. 48 7782
[14] Okuma R, Yajima T, Nishio-Hamane D, Okubo T and Hiroi Z 2017 Phys. Rev. B 95 094427
[15] Ribeiro P and Lee P A 2011 Phys. Rev. B 83 235119
[16] Guterding D, Jeschke H O and Valentí R 2016 Sci. Rep. 6 1
[17] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[18] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[19] Gomilšek M, Žitko R, Klanjšek M, Pregelj M, Baines C, Li Y, Zhang Q and Zorko A 2019 Nat. Phys. 15 754
[20] Sun W, Huang Y X, Nokhrin S, Pan Y and Mi J X 2016 J. Mater. Chem. C 4 8772
[21] Zorko A, Pregelj M, Klanjšek M, Gomilšek M, Jaglišić Z, Lord J, Verezhak J, Shang T, Sun W and Mi J X 2019 Phys. Rev. B 99 214441
[22] Zorko A, Pregelj M, Gomilšek M, Klanjšek M, Zaharko O, Sun W and Mi J X 2019 Phys. Rev. B 100 144420
[23] Sun W, Huang Y X, Pan Y and Mi J X 2017 Dalton Trans. 46 9535
[24] Puphal P, Zoch K M, Dśor J, Bolte M and Krellner C 2018 Phys. Rev. Mater. 2 063402
[25] Rodríguez-Carvajal J 1993 Physica B 192 55
[26] Barthélemy Q, Puphal P, Zoch K M, Krellner C, Luetkens H, Baines C, Sheptyakov D, Kermarrec E, Mendels P and Bert F 2019 Phys. Rev. Mater. 3 074401
[27] Pustogow A, Li Y, Voloshenko I, Puphal P, Krellner C, Mazin I I, Dressel M and Valentí R 2017 Phys. Rev. B 96 241114
[28] Han T H, Singleton J and Schlueter J A 2014 Phys. Rev. Lett. 113 227203
[29] Freedman D E, Han T H, Prodi A, Müller P, Huang Q Z, Chen Y S, Webb S M, Lee Y S, McQueen T M and Nocera D G 2010 J. Am. Chem. Soc. 132 16185
[30] Arh T, Gomilšek M, Prelovšek P, Pregelj M, Klanjšek M, Ozarowski A, Clark S, Lancaster T, Sun W, Mi J X and Zorko A 2020 Phys. Rev. Lett. 125 027203
[31] Yoshida H, Noguchi N, Matsushita Y, Ishii Y, Ihara Y, Oda M, Okabe H, Yamashita S, Nakazawa Y, Takata A, Kida T, Narumi Y and Hagiwara M 2017 J. Phys. Soc. Jpn. 86 033704
[32] Iida K, Yoshida H K, Nakao A, Jeschke H O, Iqbal Y, Nakajima K, Ohira-Kawamura S, Munakata K, Inamura Y, Murai N, Ishikado M, Kumai R, Okada T, Oda M, Kakurai K and Matsuda M 2020 Phys. Rev. B 101 220408
[1] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[2] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[3] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[4] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[5] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[6] Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme
Q Mahmood, M Yaseen, K C Bhamu, Asif Mahmood, Y Javed, Shahid M Ramay. Chin. Phys. B, 2018, 27(3): 037103.
[7] Low-temperature green synthesis of boron carbide using aloe vera
H V SarithaDevi, M S Swapna, G Ambadas, S Sankararaman. Chin. Phys. B, 2018, 27(10): 107702.
[8] Interaction and spin-orbit effects on a kagome lattice at 1/3 filling
Liu Hai-Di (刘海迪), Chen Yao-Hua (陈耀桦), Lin Heng-Fu (林恒福), Tao Hong-Shuai (陶红帅), Wu Jian-Hua (武建华). Chin. Phys. B, 2014, 23(7): 077101.
[9] A study of transition from n-to p-type based on hexagonal WO3 nanorods sensor
Wu Ya-Qiao (武雅乔), Hu Ming (胡明), Wei Xiao-Ying (韦晓莹). Chin. Phys. B, 2014, 23(4): 040704.
[10] Hydrothermal synthesis of hexagonal-phase NaYF4: Er, Yb with different shapes for application as photovoltaic up-converters
Wang Dong-Feng (王东丰), Zhang Xiao-Dan (张晓丹), Liu Yong-Juan (刘永娟), Wu Chun-Ya (吴春亚), Zhang Cun-Shan (张存善), Wei Chang-Chun (魏长春), Zhao Ying (赵颖). Chin. Phys. B, 2013, 22(2): 027801.
[11] Microstructure and optical properties of nitrogen-doped ZnO film
Zhao Xian-Wei (赵显伟), Gao Xiao-Yong (郜小勇), Chen Xian-Mei (陈先梅), Chen Chao (陈超), Zhao Meng-Ke (赵孟珂 ). Chin. Phys. B, 2013, 22(2): 024202.
[12] Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties
M. Yasir Rafique, Pan Li-Qing (潘礼庆), Qurat-ul-ain Javed, M. Zubair Iqbal, Qiu Hong-Mei (邱红梅), M. Hassan Farooq, Guo Zhen-Gang (郭振刚), M. Tanveer. Chin. Phys. B, 2013, 22(10): 107101.
[13] Effect of Sb-doping on the morphology and the dielectric properties of chrysanthemum-like ZnO nanowire clusters
Yan Jun-Feng (闫军锋), You Tian-Gui (游天桂), Zhang Zhi-Yong (张志勇), Tian Jiang-Xiao (田江晓), Yun Jiang-Ni (贠江妮), Zhao Wu (赵武). Chin. Phys. B, 2012, 21(9): 098001.
[14] Ag-doped ZnO nanorods synthesized by two-step method
Chen Xian-Mei (陈先梅), Ji Yong (冀勇), Gao Xiao-Yong (郜小勇), Zhao Xian-Wei (赵显伟 ). Chin. Phys. B, 2012, 21(11): 116801.
[15] Quantum computation with two-dimensional graphene quantum dots
Li Jie-Sen(李杰森), Li Zhi-Bing (李志兵), and Yao Dao-Xin (姚道新) . Chin. Phys. B, 2012, 21(1): 017302.
No Suggested Reading articles found!