Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104206    DOI: 10.1088/1674-1056/abefc8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Collapse arrest in the space-fractional Schrödinger equation with an optical lattice

Manna Chen(陈曼娜)1, Hongcheng Wang(王红成)1,†, Hai Ye(叶海)1, Xiaoyuan Huang(黄晓园)1, Ye Liu(刘晔)1, Sumei Hu(胡素梅)2, and Wei Hu(胡巍)3
1 School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China;
2 Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000, China;
3 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
Abstract  The soliton solution and collapse arrest are investigated in the one-dimensional space-fractional Schrödinger equation with Kerr nonlinearity and optical lattice. The approximate analytical soliton solutions are obtained based on the variational approach, which provides reasonable accuracy. Linear-stability analysis shows that all the solitons are linearly stable. No collapses are found when the Lévy index 1<α≤2. For α=1, the collapse is arrested by the lattice potential when the amplitude of perturbations is small enough. It is numerically proved that the energy criterion of collapse suppression in the two-dimensional traditional Schrödinger equation still holds in the one-dimensional fractional Schrödinger equation. The physical mechanism for collapse prohibition is also given.
Keywords:  soliton solution      collapse      variational approach      nonlinear Schrödinger equation  
Received:  04 January 2021      Revised:  11 March 2021      Accepted manuscript online:  18 March 2021
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11947122), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110935), the Research Start-up Foundation of Dongguan University of Technology, the Guangdong Science and Technology Planning Program (Grant No. 2017A010102019), the Guangdong Province Natural Science Foundation of China (Grant Nos. 2018A030307028 and 2019A1515010916), and the Maoming Natural Science Foundation of Guangdong, China (Grant No. 2019018001).
Corresponding Authors:  Hongcheng Wang     E-mail:  wanghc@dgut.edu.cn

Cite this article: 

Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍) Collapse arrest in the space-fractional Schrödinger equation with an optical lattice 2021 Chin. Phys. B 30 104206

[1] Shen Y R 1975 Prog. Quantum Electron. 4 1
[2] Marburger J H 1975 Prog. Quantum Electron. 4 35
[3] Bergé L 1998 Phys. Rep. 303 259
[4] Kivshar Y S and Pelinovsky D E 2000 Phys. Rep. 331 117
[5] Wong A Y and Cheung P Y 1984 Phys. Rev. Lett. 52 1222
[6] Sackett C A, Gerton J M, Welling M and Hulet R C 1999 Phys. Rev. Lett. 82 876
[7] Banerjee P P, Korpel A and Lonngren K E 1983 Phys. Fluids 26 2393
[8] Houbiers M and Stoof H T C 1996 Phys. Rev. A 54 5055
[9] Braun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt. Lett. 20 73
[10] Bang O, Rasmussen J J and Christiansen P L 1994 Nonlinearity 7 205
[11] Bang O, Rasmussen J J and Christiansen P L 1993 Physica D 68 169
[12] Yang J and Musslimani Z H 2003 Opt. Lett. 28 2094
[13] Feit M D and Fleck J A 1988 J. Opt. Soc. Am. B 5 633
[14] Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
[15] Laskin N 2000 Phys. Lett. A 268 298
[16] Laskin N 2000 Phys. Rev. E 62 3135
[17] Laskin N 2002 Phys. Rev. E 66 056108
[18] Zhang Y, Liu X, Belić M R, Zhong W, Zhang Y and Xiao M 2015 Phys. Rev. Lett. 115 180403
[19] Zhang Y, Zhong H, Belić M R, Ahmed N, Zhang Y and Xiao M 2016 Sci. Rep. 6 23645
[20] Zang F, Wang Y and Li L 2018 Opt. Express 26 23740
[21] Zhang L, Li C, Zhong H, Xu C, Lei D, Li Y and Fan D 2016 Opt. Express 24 014406
[22] Huang X, Shi X, Deng Z, Bai Y and Fu X 2017 Opt. Express 25 32560
[23] Zhang D, Zhang Y, Zhang Z, Ahmed N, Zhang Y, Li F, Belić M R and Xiao M 2017 Ann. Phys. 529 1700149
[24] Huang C and Dong L 2016 Opt. Lett. 41 5636
[25] Xiao J, Tian Z, Huang C and Dong L 2018 Opt. Express 26 2650
[26] Zeng L and Zeng J 2020 Commun. Phys. 3 26
[27] Klein C, Sparber C and Markowich P 2014 Proc. R. Soc. A 470 20140364
[28] Chen M, Zeng S, Lu D, Hu W and Guo Q 2018 Phys. Rev. E 98 022211
[29] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications 1st edn (Oxford: Clarendon) pp. 8-10
[30] Longhi S 2015 Opt. Lett. 40 1117
[31] Chen M, Guo Q, Lu D and Hu W 2019 Commun. Nonlinear Sci. Numer. Simulat. 71 73
[32] Muslih S I, Agrawal O P and Baleanu D 2010 Int. J. Theor. Phys. 49 1746
[33] Malomed B A 2002 Prog. Opt. 43 71
[34] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems 1st edn (Philadelphia: SIAM) pp. 390-393
[35] Yao X and Liu X 2018 Photon. Res. 6 875
[36] Pitaevskii L P 1996 Phys. Lett. A 221 14
[37] LeMesurier B J, Christiansen P L, Gaididei Y B and Rasmussen J J 2004 Phys. Rev. E 70 046614
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[6] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[7] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[8] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[9] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[10] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[11] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[12] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[13] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[14] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[15] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
No Suggested Reading articles found!